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Abstract

High-quality observations of the real world are crucial for creating realistic scene imi-

tations and performing structural analysis. Observations can be used to produce 3D

printed replicas of small-scale scenes (e.g., a toy bunny), conduct inspections of large-

scale infrastructure (e.g., a building) or integrated into virtual environments that

provide immersive experiences for our entertainment and training robotic systems.

Scenes are observed by obtaining point measurements using a sensor from

multiple views. These views can be chosen by a human operator or planned using

knowledge of existing measurements or an a priori scene model. The challenge of

selecting the ‘next’ view of a scene to obtain that will provide the ‘best’ improvement

in an observation is known as the Next Best View (NBV) planning problem.

This thesis presents work on NBV planning with a novel unstructured scene

representation. In contrast to existing literature on the problem, which typically

uses structured representations, an unstructured representation does not impose an

external structure on scene observations. There is no reduction in the fidelity of

information represented or simplifying assumptions made about the scene structure.

This unstructured representation is used to create the Surface Edge Explorer

(SEE), a novel NBV planning approach. Observed points are classified based on

the local measurement density. Views are chosen to improve the surface coverage

of an observation until a minimum point density has been attained. Experiments

comparing SEE with structured approaches demonstrate that it is able to obtain

an equivalent observation quality using fewer views and a lower computation time.

Novel point-based techniques for considering occlusions and scene visibility are

investigated. This work overcomes the raycasting constraints of existing methods

used by structured approaches. The best performing strategies for addressing each

of these challenges are integrated with SEE to create SEE++. An experimental

comparison of SEE++ with SEE and structured approaches demonstrates that it

achieves significant improvements in observation performance by requiring fewer

views and shorter travel distances while maintaining a reasonable computation time.

Observations of real world scenes using SEE and SEE++ illustrate the successful

transference of their capabilities from a simulation environment to the real world.

Qualitative results show that both approaches are able to obtain highly complete ob-

servations of several scenes with varying size and structural complexity using multiple

sensor modalities. Quantitative results demonstrate that SEE++ observes the scenes

with greater efficiency than SEE by utilising an increased computational time.
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Notation

General Notation

a Scalars are denoted by lower-case unbolded variables.

A Sets are denoted by upper-case unbolded variables.

a Vectors are denoted by lower-case bolded variables.

A Matrices are denoted by upper-case bolded variables.

Specific Symbols

∅ Denotes the empty set.

I Denotes the identity matrix.

f Denotes a frontier point.

v Denotes a view proposal.

x Denotes a view position.

φ Denotes a view orientation.

r Denotes the resolution radius.

ρ Denotes the target measurement density.

d Denotes the view distance.

ψ Denotes the occlusion search distance.

τ Denotes the view visibility update limit.

Specific Operators

|·| Denotes the cardinality of a set.

||·|| Denotes the L2-norm of a vector.
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1
Introduction

Humans have always strived to capture observations of the real world that are

indistinguishable from our own perceptions. It is only relatively recently that

this capability has entered the realm of possibility. The invention of photography

in the 19th century made it possible to capture a realistic observation in two

dimensions. The first three-dimensional observations were obtained using manual

photogrammetry in the early 20th century to create terrain elevation maps from

aerial photographs. Our ability to capture high-quality 3D observations of the real

world has advanced rapidly since the advent of digital technology, to the extent

that it is now possible to observe small-scale scenes using consumer products (e.g.,

the MakerBot Digitizer; Fig. 1.1a).

Realistic observations are crucial for the accurate analysis and imitation of the

real world with digital systems. High-accuracy scanners attached to industrial

robots are used to compare the structure of manufactured parts with ground truth

production models for quality control (e.g., the MetraSCAN 3D-R; Fig. 1.1b).

Observations obtained from surveying large-scale outdoor structures, typically

with an aerial platform, can be used for infrastructure inspection (Fig. 1.2a) or

to preserve edifices of historical significance. For example, observations of Notre

Dame Cathedral (Fig. 1.2b) and the ancient city of Palmyra, destroyed by ISIS,

are being used to aid their respective reconstruction efforts.

1



1. Introduction 2

(a) MakerBot Digitizer (b) MetraSCAN 3D-R

Figure 1.1: Images of consumer and industrial products used to obtain observations
of real world objects. (a) shows the MakerBot Digitizer, a desktop 3D scanner that
captures observations of small objects placed on a rotating turntable using laser
measurements. Image courtesy of MakerBot. (b) shows a MetraSCAN 3D-R, a
LiDAR sensor array on an industrial robot arm which obtains accurate observations
of manufactured parts using known production models. Image courtesy of Creaform.

High-quality observations are also being used to improve the realism of virtual

environments for the purposes of entertainment and testing robotic systems. Obser-

vations of real structures are integrated into video games to provide an immersive

experience (e.g., the Sphinx in Assassin’s Creed: Origins; Fig. 1.3a). Accurate

visual and structural observations of the real world can improve the fidelity of virtual

testing environments for robotic systems and reduce the reality gap for physical

deployment (e.g., Carcraft from Waymo; Fig. 1.3b). As the capability of 3D sensors

improves it is becoming possible to create increasingly realistic simulations of the

real world for such applications. Whether it is possible to achieve realism that

is indistinguishable from our reality (i.e., the simulation hypothesis) is a hotly

debated topic, and beyond the scope of this thesis.

Capturing high-quality observations is a challenge regardless of their final

purpose. A scene (i.e., a bounded region of space) is observed by capturing

individual point measurements from surfaces using a 3D sensor. These points are

captured by estimating the distance of scene surfaces along a set of rays originating

from the sensor position. This distance can be computed by triangulating the

relative positions of unique visual features in multiple images (i.e., a stereo camera),

evaluating the deformation of a known pattern projected over scene surfaces (i.e., an
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(a) Aerial Observation using DroneDeploy (b) Observation of Notre Dame Cathedral

Figure 1.2: Images of observations obtained for large-scale outdoor scenes. (a)
shows the observation of an industrial site obtained using DroneDeploy, a system
for surveying structures using photographs captured with an aerial platform. Image
courtesy of DroneDeploy. (b) shows an observation of Notre Dame Cathedral
obtained by capturing measurements from multiple views with a Leica ScanStation
C10 and coloured using panoramic photographs. Image courtesy of Andrew Tallon.

RGB-D camera) or measuring the time-of-flight of an emitted infrared light pulse

by detecting its reflection (i.e., a LiDAR sensor). The result is a set of 3D points

with x- and y-coordinate positions defined by the distribution of rays within the

sensor field-of-view and z-coordinate positions given by the computed depth values.

Observations are obtained by combining point measurements captured from

multiple views (i.e., sensor poses) around a scene. An observation can be considered

complete if the measurements obtained provide coverage of all visible scene surfaces.

The coverage achieved depends on the capabilities of the sensor used, the scene

structure and the views from which measurements are obtained. The views can be

chosen by a human operator, either by specifying a predefined sequence of views or

by iterative selection based on an empirical consideration of the current observation

state. Using a predefined sequence of views is typically not a successful strategy

for obtaining complete observations of different scene structures as the coverage

obtained from a view varies with the surface geometry being observed. Relying on

the empirical selection of views by a human operator is often not desirable and may

not be possible in some circumstances. The quality of observations obtained depends

on the operator’s expertise and the allowance for human-in-the-loop control of the

sensor platform, which may not be possible when operating in certain environments.
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(a) The Sphinx in Assassin’s Creed: Origins (b) Carcraft Simulation Environment

Figure 1.3: Images of real world observations that are integrated into simulation
environments. (a) shows the Sphinx in Assassin’s Creed: Origins, which is based on
a real observation using photogrammetry. Image courtesy of Ubisoft. (b) shows the
real world observations included in the Carcraft simulation environment developed
by Waymo for training autonomous driving systems. Image courtesy of Waymo.

A better solution for selecting views, which mitigates human uncertainty, is to

formulate an algorithm that chooses views by evaluating a priori scene knowledge

and the current state of an observation. The challenge of planning a ‘next’ view

based on these considerations that can provide the ‘best’ improvement in a scene

observation is known as the Next Best View (NBV) planning problem. This was

initially defined in seminal work by Connolly (1985) together with the first solutions.

Approaches to the NBV planning problem can be categorised based on their

use of a priori scene knowledge. Those that require prior information of the scene

structure to plan next best views are referred to as model-based. These approaches

are capable of obtaining high-quality observations of scenes for which ground truth

knowledge is available (e.g., to compare a manufactured part with its production

model) but not do generalise to observing unknown scenes. Model-free approaches

do not require a priori scene knowledge to obtain an observation, allowing them to

observe unknown scenes. They plan next best views by evaluating information on

the current observation state, which is encoded in a given scene representation.

Most model-free NBV planning approaches use structured representations. Scene

information is encoded in an external structure imposed on the point measurements

captured from views. Volumetric representations segment the scene volume into a 3D

voxel grid that encodes information on measurement occupancy and the observation
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state. Surface representations define a connectivity between point measurements

to create a triangulated surface mesh. These representations are often used to

simplify the NBV planning problem by considering point measurements in aggregate

but this can reduce the quality of observations. The fidelity of scene information

considered is limited by the structural resolution, as given by the voxel size for a

volumetric representation or the parameters defining mesh connectivity for surface

representations. This means that the observation of scene features smaller than the

structural resolution can not be ensured when planning next best views.

It is often necessary to use simplifying assumptions to reduce the computational

cost of evaluating and updating an external structure. Approaches with a volumetric

representation evaluate potential next best views by raycasting their voxel grid. The

evaluation cost is typically reduced by sampling a fixed set of views around the scene

rather than adaptively proposing views based on captured measurements. This can

restrict the achievable scene coverage as it is dependent on the quantity, distribution

and orientations of the sampled views. Many approaches also obtain a fixed number

of views in lieu of evaluating observation completeness from captured measurements.

Surface representations are often too computationally expensive to update in

real-time and therefore such approaches typically use multiple observation stages.

An initial mesh is computed from sparse measurements which is then improved by

planning a subsequent observation. The views planned are limited by the initial

mesh construction and are often not updated during the observation to account for

new measurements, reducing the quality of observation achieved. The overall time

required to observe a scene is also increased by the multiple observation stages.

This thesis presents work on a novel unstructured representation based on the

measurement density in a scene observation. It is founded on the principle that

obtaining a given minimum measurement density on all scene surfaces is a sufficient

condition to achieve a complete observation. No external structure is imposed

on point measurements so all scene information is represented with a point-based

encoding and only local pointwise computations are required to update and evaluate

the representation. Points are individually classified based on the local measurement
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density rather than being aggregated into an external structure so the fidelity of

scene information considered is not limited by a given structural resolution. The

measurement density is computed within a specified radius but this only limits the

extent of scene information considered and not the fidelity of point measurements.

This unstructured representation is computationally efficient to maintain as only

local updates are performed when new measurements are obtained so simplifying

assumptions about the scene structure are not required. Views are proposed to

improve a scene observation based on information encoded in the representation

and can be adapted to account for new measurements. This means that greater

improvements in scene coverage can be achieved by directly considering the scene

structure. Only a sufficient number of views are captured to achieve the specified

measurement density and only a single observation stage is required. This improves

efficiency by reducing the number of views, travel distance and computation time.

The remainder of this thesis is organized as follows. Chapter 2 presents a

review of the NBV planning problem and relevant literature on existing approaches.

The key considerations of a NBV planning approach are described: the scene

representation, the method for proposing views, the metric for selecting a next best

view and criteria for terminating an observation. The literature review discusses

existing approaches in the context of these key considerations.

Chapter 3 presents the Surface Edge Explorer (SEE), a NBV planning approach

implementing the novel unstructured density representation. The observation

performance of SEE is compared experimentally with approaches using a volumetric

representation for the observation of scenes in a simulation environment. This

work was first presented in Border et al. (2017) at the 2017 Joint Industry and

Robotics CDTs Symposium and extended in Border et al. (2018) at the 2018 IEEE

International Conference on Robotics and Automation (App. B).

Chapter 4 presents an investigation of point-based strategies for proactively

handling occlusions with an unstructured representation. Methods for detecting

occluding points are discussed and a novel representation for pointwise occlusions
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is presented. Several strategies for proposing unoccluded views are investigated and

an experimental evaluation with SEE of their observation performance is presented.

Chapter 5 presents an investigation of methods for considering scene visibility

with an unstructured representation. Different graphical representations are investi-

gated for encoding information on the visibility of target points from the set of view

proposals. Several metrics for selecting next best views using a novel covisibility

graph are presented. Their effect on observation efficiency is compared using SEE.

Chapter 6 presents SEE++, a NBV planning approach which integrates the best

performing techniques for proactively handling occlusions and considering scene

visibility using an unstructured representation with SEE to improve the efficiency

of scene observations. The performance of SEE++ is compared experimentally

with SEE and NBV planning approaches using a volumetric representation for

observations of scene models in a simulation environment. This work was presented

in Border and Gammell (2020) at the 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (App. C).

Chapter 7 presents a real world demonstration of SEE and SEE++ for the

observation of scenes with varying structures independently using both a stereo

camera and LiDAR sensor. Qualitative pointcloud results obtained from the scene

observations are accompanied by a discussion of their completeness and quality.

Quantitative metrics are used to evaluate the observation performance of SEE and

SEE++. This work is being prepared for submission to a field robotics journal.

The work presented in this thesis makes the following key contributions:

1. A novel unstructured scene representation using measurement density, which

is founded on the principle that obtaining a minimum measurement density on

all scene surfaces is a sufficient condition to achieve a complete observation.

2. SEE, a NBV planning approach using this novel representation that imposes no

assumptions on the scene structure. Views are proposed, selected and adapted

to improve a scene observation by directly considering point measurements.
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3. An investigation of point-based strategies for proactively handling occlusions

which detect occluded views of target points and aim to propose alternative

unoccluded views from which the target surfaces can be successfully observed.

4. An investigation of methods for considering scene visibility with an unstruc-

tured representation which aim to select next best views that can provide the

greatest improvements in scene coverage while travelling short distances.

5. SEE++, a NBV planning approach that integrates the most successful methods

for handling occlusions and considering scene visibility with SEE to greatly

improve observation performance by utilising an increased computation time.

6. Real world demonstrations of the presented approaches obtaining observations

of several different scenes using both a stereo camera and LiDAR sensor.

7. Implementations of SEE and SEE++ that will be made available open-source

to aid further research into NBV planning with unstructured representations.
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This chapter presents an overview of the NBV planning problem (Sec. 2.1) and

a review of relevant NBV planning literature. The literature review focuses on NBV

planning approaches for scene observation as these are most relevant to the work

presented in this thesis. However, the methodology of NBV planning is also applied

to tasks other than scene observation in the wider field of active vision (Chen et al.

2011), including for object search (Kunze et al. 2017), recognition (Foissotte et al.

9
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2009; Wu et al. 2015; McGreavy et al. 2017) and reducing measurement uncertainty

in multiview stereo reconstructions (Wenhardt et al. 2007; Trummer et al. 2010).

Literature surveys of work on NBV planning for scene observation have assessed

the performance of several algorithms and presented different strategies for categoris-

ing approaches (Tarabanis et al. 1995; Scott et al. 2003; Karaszewski et al. 2016a).

Tarabanis et al. (1995) classify approaches by their method for proposing views.

Scott et al. (2003) use a two-dimensional categorisation based on the use of an a

priori model and the chosen scene representation. Karaszewski et al. (2016a) focus

their review on evaluating the performance of various state-of-the-art approaches

on multiple scenes using different sensors.

This review adopts the classification scheme presented by Scott et al. (2003) to

discuss approaches based on their scene representation and use of an a priori model.

Model-based approaches are discussed collectively in Section 2.2. The remaining

sections discuss model-free approaches grouped by their scene representation.

Approaches using a volumetric representation are further subdivided by their

method for proposing views. The assessment of each approach considers the use of

scene information, the method for proposing views, the metric for selecting next

best views and the termination criteria if any are specified.

2.1 The Next Best View Planning Problem

The challenge of NBV planning is proposing and selecting a sequence of views that

can obtain the ‘best’ observation of a scene as efficiently as possible. The quality of

a scene observation can be quantified by its accuracy (i.e, how closely an observation

resembles the actual scene) and completeness (i.e., what proportion of the scene is

captured by an observation). The accuracy of an observation primarily depends on

the capabilities of the sensor used to obtain measurements but can be improved

by considering the scene structure. For example, measurements captured using

stereo and RGB-D sensors are typically more accurate when the view orientation is

orthogonal to the surface plane. The completeness of an observation depends on the



2. Background 11

scene coverage obtained from captured views. This can be improved by considering

the visibility of scene volumes or surfaces when proposing and selecting views.

The efficiency of scene observations can be quantified by the sensor travel

distance, computational cost and number of views required. It is often necessary to

observe scenes with the greatest possible efficiency in order to respect the operational

constraints of a sensor platform. Observing scenes with short travel distances reduces

the energy consumption of the sensor platform when moving between views. A lower

computational cost is desirable when using platforms with limited processing power.

Obtaining observations using the fewest number of views necessary to achieve a

given quality limits the storage required for sensor measurements and typically also

reduces the overall travel distance and computational cost.

This challenge is known as the NBV planning problem as each view is chosen

subsequent to evaluating the information obtained from previous views and in

some cases a priori scene knowledge. A solution to the problem can be formally

expressed as a function, vi+1 = NBV(W,K), which selects a view, vi+1, from a

set of potential views, W , based on information obtained from previous views

or a priori scene knowledge, K. The next best view is selected to provide the

greatest improvement in the scene observation by evaluating a function defined

from a given set of quantitative metrics, M(v, K),

vi+1 = NBV(W,K) = arg max
v∈W

M(v, K) . (2.1)

Most NBV planning approaches select views and obtain new measurements

until a given termination criterion is satisfied. This can be specified in terms of the

observation cost (e.g., a number of views, travel distance or time constraint) or the

observation quality (e.g., the completeness or accuracy of the resulting model).

There are many different approaches to the NBV planning problem, all of

which present solutions to the common challenges of representing scene information

(Sec. 2.1.1), proposing views to observe the scene (Sec. 2.1.2), selecting a next best

view (Sec. 2.1.3) and deciding when to terminate an observation (Sec. 2.1.4).
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2.1.1 Representing Scene Information

Scene information is extracted from sensor measurements or a priori knowledge to

inform the proposal of views, the selection of next best views and the termination

criteria for completing a scene observation. Sensor measurements are typically a

collection of observed points (i.e., a pointcloud) obtained using an RGB-D sensor,

stereo camera (e.g., an Intel RealSense D435) or LiDAR (e.g., a Velodyne VLP-16).

Approaches that require the existence of an a priori scene model for planning

views are referred to as model-based. Model-based approaches are useful for

comparing an as-built object with a known ground truth (e.g., a manufactured part

with its CAD model) but do not generalise to unknown scenes.

Most approaches plan views using incomplete and frequently noisy scene infor-

mation obtained from sensor measurements. These approaches require no a priori

scene model and are referred to as model-free. Many model-free approaches primarily

consider geometric information extracted from a structured representation imposed

upon the scene observation. Global representations consider observed points to be

measurements sampled from an underlying globally connected structure.

Volumetric representations segment the scene volume into a three-dimensional

grid known as a voxel grid (Fig. 2.1a). The state of each cell in the voxel grid

can encode information regarding its visibility (i.e., which views can it be seen

from), observation status (i.e., has it been seen before) and occupancy (i.e., does

it contain any point measurements). Surface representations connect observed

points to create a surface mesh (Fig. 2.1b). This mesh can contain information

about the distribution of observed points and the boundaries of the current scene

observation. Some NBV planning approaches use a combination of volumetric and

surface representations for encoding scene information.

Unstructured representations do not impose an external structure on the scene

or assume any connectivity between observed points. This thesis presents work

on NBV planning using an unstructured density representation (Fig. 2.1c). Point

measurements are classified based on the local density of neighbouring points within

a specified radius. Those with a given minimum density are completely observed
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r

(a) Volumetric representation

r

(b) Surface representation

r

(c) Density representation

Figure 2.1: Cross sectional illustrations of (a) a volumetric scene representation
(i.e., a voxel grid), (b) a surface representation (i.e., a triangulated mesh) and (c)
the unstructured density representation presented in this thesis. The resolution
parameter, r, defines the voxel size for a volumetric representation, the edge length
for a surface representation and the search radius for the density representation.

and those with insufficient density are partially observed. Points along the boundary

of these sets are used to propose views that will improve the scene observation.

2.1.2 Proposing Views

Most NBV planning approaches select next best views from a set of views that are

proposed to improve the observation of a scene. An ideal set of view proposals would

provide complete coverage of a scene while accounting for occlusions, maximising

observation quality and minimising computational cost. Views can be obtained from

a view surface encompassing the scene, sampled using path planning methods or pro-

posed using information from existing measurements or an a priori model (Fig. 2.2).

Approaches for observing scenes with a priori models often propose a set of

views offline before the scene observation begins. These views can utilise all of

the scene knowledge provided by the a priori model to obtain the best possible

surface visibility by accounting for occlusions and requiring views to be oriented

orthogonally to surfaces in order to capture the highest quality measurements.

Obtaining views from a view surface encompassing the scene is computationally

efficient as no evaluation of scene information is required (Fig. 2.2a). However, the

computational cost of selecting a next best view is often significant as an exhaustive

evaluation of every view proposal is performed. High coverage of the scene volume

can be achieved by uniformly sampling views on a spherical or hemispherical surface,

as constrained by the reachability of the sensor and the scene structure. Views are
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(a) View Surface (b) View Sampling (c) Scene-informed Views

Figure 2.2: Cross sectional illustrations of different methods for proposing views.
They can be (a) obtained from a view surface encompassing the scene, (b) sampled
in free space around the scene using path planning methods, or (c) proposed based
on scene information (e.g., surface normals; grey arrows) obtained from sensor
measurements or an a priori scene model.

typically oriented towards the centre of the scene volume. The observation quality

and surface coverage obtainable is often limited as geometric scene information is

not considered. Occlusions can prevent the observation of scene surfaces as views are

not adapted to account for restrictions in surface visibility. Measurements with low

accuracy may be obtained from views with an acute angle between their orientation

and the observed surface geometry when using a stereo camera or RGB-D sensor.

Sampling views of a scene using path planning methods (e.g., RRT; LaValle

1998 or RRT*; Karaman and Frazzoli 2011) is computationally more expensive than

sampling them from a surface encompassing the scene but can significantly reduce

the computational cost of evaluating view proposals (Fig. 2.2b). View sampling is

typically performed locally which reduces the number of view proposals considered

when selecting a next best view. Most volumetric approaches using this method do

not directly consider scene information when sampling views. Occlusions, surface

visibility and observation quality are only considered when evaluating view proposals.

Model-free approaches to NBV planning that do not sample view proposals from a

surface or with planning methods propose views based on scene information extracted

from sensor measurements (Fig. 2.2c). This results in a dynamic set of view

proposals that can change based on information obtained from new measurements.

New views can be proposed to observe recently discovered scene surfaces and existing

views adjusted to provide better coverage of partially observed surfaces. Occlusions

can be handled reactively by incrementally adjusting views until the target surface
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becomes visible or proactively detected and avoided. More accurate measurements

can be obtained by considering estimates of the surface geometry being observed.

2.1.3 Selecting a Next Best View

A next best view is selected from the set of view proposals. The chosen view is the

one that will ‘best’ improve the scene observation according to a set of evaluation

metrics, as in (2.1). The most commonly used metrics consider sensor travel distance,

scene coverage and observation quality. Most NBV planning approaches combine

these metrics to try and obtain the most complete scene observations with the

highest accuracy using the fewest views and shortest sensor travel distance.

Reducing the travel distance required to observe a scene is important when

considering the energy constraints of mobile robots. Platforms powered by onboard

batteries (e.g., UGVs and UAVs) often have limited energy capacity that can be

rapidly drained by moving long distances. It is therefore desirable to select views

that can obtain a complete scene observation while requiring the least movement.

Scenes can be observed using fewer views by obtaining greater increases in surface

coverage per view. This is achieved by evaluating the visibility of incompletely

observed surfaces from each view and selecting the view with the best visibility.

Requiring fewer views improves the efficiency of most NBV planning approaches as a

computational and storage cost is incurred for processing each sensor measurement.

The accuracy of point measurements depends on the sensor capabilities, the scene

structure and the view distance of the sensor from scene surfaces. Measurement

accuracy can be quantified by considering the variance of observed points and their

consistency with previous measurements. When using stereo cameras and RGB-

D sensors, higher accuracy measurements can be obtained by observing surfaces

from orthogonally oriented views at short distances, as the uncertainty of depth

measurements increases with distance and the acuteness of the observation angle.
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2.1.4 Terminating Observations

The observation of a scene can be terminated manually or when a specified

termination criterion has been satisfied. A termination criterion can be defined in

terms of observation cost (e.g., number of views, travel distance or computation

time) and observation quality (e.g., surface coverage or measurement accuracy).

NBV planning approaches that rely on manual termination require human

intervention and are not deployable on autonomous systems. This limits their use

to scenarios where a human operator has the ability to oversee the scene observation

in real-time and terminate the NBV planning at a time of their choosing.

Approaches using observation cost as a termination criterion are best suited for

deployment on platforms with strict operating constraints. They can guarantee that

a scene observation will be obtained within a specified time limit, travel distance or

number of views, regardless of the completeness or quality of the resulting model.

Specifying a termination criterion in terms of observation quality ensures that

a NBV planning approach will propose, select and obtain new views until it has

obtained a sufficient coverage of sensor measurements. It is not possible for an

approach to guarantee complete surface coverage or measurement accuracy as these

are dependent on the scene structure and sensor capabilities. For example, stereo

cameras are often unable to obtain accurate measurements of untextured surfaces.

2.2 Model-based Approaches

Model-based approaches for NBV planning (Tarbox and Gottschlich 1995; Blaer

and Allen 2007; Scott 2009; Bircher et al. 2015; Kaba et al. 2017) are typically

applied to inspection tasks where a scene observation is obtained to compare the

as-built structure of an object with a known ground truth. These approaches require

a priori scene knowledge for proposing views and selecting a next best view.

Tarbox and Gottschlich (1995) present three approaches for obtaining scene

observations with different next best view selection metrics and a known reference

model. The objective is to observe a set of points sampled from the reference model
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surface. A point is considered observable from a given view if it is unoccluded and

the view orientation is sufficiently orthogonal to the local surface of the reference

model. Occlusions are detected by raycasting a voxel grid representation of the

scene to identify occupied voxels. View proposals are obtained from a sphere

encompassing the scene. Sampled points are associated with the set of view

proposals from which they are observable. The first approach chooses the view

that can observe the most points with small observability sets (i.e., those most

difficult to observe). The second approach chooses the view that can observe the

greatest number of points from an orientation orthogonal to their respective surfaces.

The third approach performs a global optimisation to find the minimum set of

views that can observe the set of sampled points. The approaches terminate when

all of the sampled points are observed.

Blaer and Allen (2007) present a multistage approach for observing large-scale

scenes. The initial stage utilises an a priori two-dimensional map of the environment

to plan a set of views from which all boundary edges can be observed. Views are

randomly sampled in the map and the boundary edges observable within the frustum

of each view, as defined by the sensor properties, are identified. The visibility of

each edge is further constrained based on the orthogonality of the view orientation.

A minimum covering set of views is selected from which all boundary edges can

be observed. The secondary observation stage uses a volumetric representation

(i.e., a voxel grid) of the model obtained from the initial observation to identify

incompletely observed regions. Voxels are associated with a state denoting their

observation (i.e., have they been viewed) and occupancy (i.e., do they contain point

measurements) status. They can be observed or unobserved and have an occupied

or unoccupied occupancy state. The set of view proposals contains the centres of

unoccupied voxels in the initial model that intersect the ground plane of the a priori

map. The next best view selection metric chooses the view from which the most

unobserved boundary voxels are visible. An unobserved boundary voxel is defined

as an unobserved voxel with at least one neighbouring voxel that is both observed

and unoccupied. A voxel is visible from a view if no occupied voxels are intersected
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by raycasting from the view. A scene observation terminates when the number of

visible unobserved boundary voxels falls below a given threshold.

Scott (2009) presents a model-based view planning approach that is applicable

to both object inspection and scene observation. Views are proposed to observe

surface points sampled from a scene model as presented by Tarbox and Gottschlich

(1995). The model does not have to be a known ground truth and can instead be a

rough estimate from a initial scene observation obtained using a predetermined view

trajectory. This multistage approach is similar to that presented by Blaer and Allen

(2007). A surface representation (i.e., a triangulated mesh) is used to define the

connectivity between sampled points. A view is proposed to observe each sampled

point at a given distance from the point along the normal to the surface mesh.

Occlusions are not considered. The observability of every point from each view

is evaluated. A point is considered observable from a given view if the point lies

within the view frustum, is visible given the sensor properties and if a sufficiently

dense and precise set of point measurements can be obtained around the point. A

minimum covering set of views is selected to observe the scene. A view trajectory

plan is computed using an approximation of the travelling salesman problem.

Bircher et al. (2015) present a view planning approach for structural inspection

tasks. The objective is to obtain a complete scene observation with the shortest

possible travel distance by iteratively planning a view trajectory based on an a

priori triangulated surface mesh. A view is proposed to observe every triangle

in the surface mesh. The pose of each view is optimised to reduce the distance

between neighbouring views while maintaining a minimum observation angle with

the surface plane and a bounded view distance. Occlusions are not considered. The

shortest path between the view proposals is computed as an approximate solution

of the travelling salesman problem. The optimised view proposals are updated and

a new trajectory is computed after each view which replaces the previous solution

if it provides a shorter path. The scene observation terminates when there are no

view proposals remaining (i.e., the termination criterion is a view limit defined

by the number of triangles in the surface mesh).
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Kaba et al. (2017) present a reinforcement learning approach to model-based

view planning. This approaches requires an a priori surface mesh of the scene. A

set of views are proposed given this mesh but the process for proposing these views,

including whether occlusions are considered, is not discussed. Next best views are

selected to maximise the observable area of the mesh relative to an exponential

weighting of its perimeter. The weight for selecting each view is learned with

a reinforcement learning approach. A scene observation terminates when every

triangulated surface in the a priori mesh has been observed.

Model-based approaches provide a suitable solution to the problem of obtaining

an observation of a known scene for comparison with a ground truth model. However,

they do not address the NBV planning problem for observing unknown scenes.

2.3 Global Representations

Model-free approaches to NBV planning with a global representation (Yuan 1995;

Pito 1996; Chen and Li 2005) use measurements to define a globally connected

scene structure that is evaluated when proposing and selecting next best views.

Yuan (1995) presents a global scene representation based on mass vector chains.

Point measurements are segmented into local surface patches such that the normal

to each patch is consistent for all the encompassed points. The mass vector chain is

the set of surface normals each weighted by the size of the corresponding surface

patch. The paper shows that the sum of the mass vector chain for an enclosed convex

surface is equal to zero. Virtual surface patches can be added and processed as part

of the mass vector chain to handle concave surfaces. This approach does not use a

set of view proposals. A next best view is selected with an orientation equal to the

sum of the current mass vector chain. A view with this orientation should observe a

surface patch, if one exists, whose normal is equal to the negative sum of the mass

vector chain that would enclose the boundary surface. A method for setting the

view distance is not discussed. The view orientation is adjusted if it is occluded by

existing surface patches. A scene observation terminates when the sum of the mass

vector chain is equal to zero (i.e, when an enclosed surface has been observed).
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Pito (1996) presents a global positional space representation to encode informa-

tion on the visibility of unobserved scene regions at the boundary of an observed

scene mesh. The positional space is a discretised surface (e.g., a tessellated sphere)

encompassing the scene. The scene volume is discretised into a voxel grid to

denote unobserved regions. Sensor measurements are connected into a triangulated

surface mesh. Rectangular void patches attached to each boundary edge in the

mesh represent the transition between observed and unobserved space. The patch

orientation is defined by identifying free space around the mesh using raycasting

from the set of view proposals. These are sampled from a discretised surface

encompassing the positional space. The intersection of ranging rays from a view

proposal with a region of the positional space denotes its visibility. The same

process is used to determine the observability of void patches from regions on

the positional space along observation rays defined by their normals. The set of

ranging rays which intersect with the same region of positional space as a set of

observation rays denote that the void patches corresponding with the observation

rays are visible from the views associated with the ranging rays. The next best

view selection metric chooses the view that can observe the greatest number of void

patches while also resampling a given proportion of known surfaces to ensure overlap

between views. A scene observation terminates when the number of observable

void patches falls below a specified threshold.

Chen and Li (2005) present a global surface trend scene representation. This

requires that the scene surfaces are locally smooth and continuous. Sensor measure-

ments are treated as noisy samples from a continuous globally connected surface

defined by a geometric function. The difference between observed points and the

surface trend is the residual error. A set of points is identified at the boundaries of

the currently observed surface from which the scene observation can be extended into

the unknown scene volume. The next best view target is determined by selecting

the point from this set with the least uncertainty in the local surface trend (i.e., the

lowest surface order) from which the greatest unknown scene volume can be observed.

Boundary points on smoother surfaces are weighted higher, as they provide more
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accurate predictions of the unseen surface geometry. The next best view pose is

determined by considering the sensor parameters (i.e., the resolution and field-of-

view) and the local surface geometry. The view orientation is set as the inverse of

the surface normal to minimise the measurement uncertainty. The view position (i.e,

the distance from the surface) is chosen to observe as much of the unknown surface

as possible given the sensing constraints. Occlusion handling is discussed but no

approach is included in the implementation. A termination criterion is presented

based on scene coverage. The surface trend model is discretised and regions with

no observed points (i.e., holes in the surface) are identified. The scene observation

ends when no holes with a diameter greater than a specified threshold exist.

Approaches using global representations are often capable of obtaining high-

quality observations of scenes with simple surface geometries, for which the global

assumptions imposed on the scene structure are valid, but typically do not generalise

to obtaining observations of scenes with complex and discontinuous surface geometry.

2.4 Volumetric Representations

A volumetric representation is most commonly used by NBV planning approaches

for encoding scene information. This representation divides the scene volume into a

three-dimensional grid of cells known as voxels. A state associated with each voxel

encodes information on its observability, visibility and the measurements it contains.

Views can be obtained from a view surface encompassing the scene, sampled using

path planning techniques or proposed using voxel information. Occlusions and

voxel visibility can be identified by raycasting the voxel grid. A next best view

is usually selected by considering the states of the voxels visible from each view

proposal. Termination criteria are often defined in terms of the observation states

of voxels or as a fixed number of views.

Approaches using a volumetric representation can be broadly separated into

three categories based on their method for proposing views. Many approaches

sample a fixed set of views from a surface encompassing the scene (Connolly 1985;

Wong et al. 1999; Papadopoulos-Orfanos and Schmitt 1997; Massios and Fisher
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1998; Banta et al. 2000; Vasquez-Gomez et al. 2009; Vasquez-Gomez et al. 2014;

Adler et al. 2014; Isler et al. 2016; Delmerico et al. 2018; Abduldayem et al. 2017;

Mendoza et al. 2019). The view surface is usually a sphere or hemisphere depending

on the sensing constraints. These approaches are discussed in Section 2.4.1.

Some approaches use path planning methods to sample view proposals from

regions of free space in the scene (Potthast and Sukhatme 2011; Potthast and

Sukhatme 2014; Yoder and Scherer 2016; Bircher et al. 2016; Bircher et al. 2018;

Selin et al. 2019; Vasquez-Gomez et al. 2017; Vasquez-Gomez et al. 2018). These are

discussed in Section 2.4.2. Other approaches propose views based on information

obtained from point measurements (Connolly 1985; Wong et al. 1999; Daudelin and

Campbell 2017; Monica and Aleotti 2018a). These are discussed in Section 2.4.3.

Connolly (1985) and Wong et al. (1999) present multiple view proposal techniques.

Song and Jo (2017) also use a volumetric representation but this was extended

to a combined approach in subsequent work (Song and Jo 2018) that will be

discussed in its entirety in Section 2.6.

2.4.1 Sampling Views from a Surface

Volumetric approaches that sample views from a surface encompassing the scene

primarily differentiate themselves by how they use information in their voxel repre-

sentation to inform the selection of next best views and define termination criteria.

Connolly (1985) presents what is arguably the formative work for the field of

NBV planning. This is the first work to use the term next best view and present

approaches to the problem. One of these approaches uses a fixed set of view

proposals sampled from the surface of a sphere encompassing the scene. Voxels

are classified as occupied if they contain point measurements, unobserved if they

have not yet been viewed or unoccupied if they have been observed but contain no

point measurements. All voxels are initially classified as unobserved. A next best

view is selected to observe the greatest number of visible unobserved voxels while

accounting for occlusions from occupied voxels. A scene observation terminates

when there are no remaining view proposals with visible unobserved voxels. A
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similar approach is presented by Wong et al. (1999) as a benchmark for their

work on information-based view proposals.

Papadopoulos-Orfanos and Schmitt (1997) present an approach using the same

voxel state representation as Connolly (1985). A preplanned zigzag trajectory

traverses views sampled uniformly within the scene volume. After each view is

obtained the voxel representation is updated with newly classified occupied and

unoccupied voxels. The trajectory is then modified to account for the obstacles and

occlusions resulting from occupied voxels by moving into unoccupied voxel space.

The scene observation terminates when the trajectory is complete.

Massios and Fisher (1998) introduce an observation quality metric to the

voxel representation and a new class of occplane voxels. This voxel class contains

unobserved voxels with at least one neighbouring unoccupied voxel. The observation

quality metric is based on the angle between a local estimate of the surface normal,

computed from the point measurements within a given voxel neighbourhood, and

the view orientation. This metric is updated for every occupied voxel observed by

each view. The next best view selection metric chooses the view which maximises a

weighted sum combining the number of observable occplane voxels and the estimated

improvement in observation quality for visible observed voxels. The termination

criterion is triggered when a previously visited view is selected as the next best view.

Banta et al. (2000) present a set of next best view selection metrics that are

integrated into a multistage observation approach. All of these metrics are based

on the distribution of occluded voxels in the scene. Occluded voxels are unobserved

voxels which lie within the sensor field-of-view but are obscured by occupied voxels.

Initial measurements are obtained by greedily selecting next best views that can

observe the greatest number of occluded voxels. Intermediate measurements are

obtained by selecting the next best view that can best observe the centroid of

occluded voxels. Subsequent measurements are obtained by clustering the occluded

voxels and selecting the view with the best visibility of the largest cluster. A scene

observation terminates when the ratio of observed to occluded voxels exceeds a

given threshold and too few voxels have changed classification.
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Vasquez-Gomez et al. (2009) present an approach, extended in subsequent work

(Vasquez-Gomez et al. 2014), which combines the full set of voxel classifications

(i.e., unobserved, occupied, unoccupied, occluded and occplane) with a next best

view selection metric that considers observability, visibility, quality and navigation

cost. The observability metric aims to balance the observation of unobserved

voxels and obtaining overlapping views. It specifies target percentages for what

proportion of the voxels visible from a view should be classified as occupied or

occplane and penalises views which deviate from the targets. The visibility metric

aims to identify occlusions. It evaluates views based on the number of visible

occplane voxels relative to the raycasting resolution. The quality metric aims to

improve measurement accuracy by prioritising views that are orthogonal to scene

surfaces. An estimate of the local surface normal is computed for each occupied

voxel. The metric is defined as the sum of the angles between the estimated normal

for each voxel and the view orientation weighted by the number of occupied voxels.

The navigation metric aims to reduce the distance travelled between views. The

combined next best view selection metric is defined as the product of the visibility

metric and the summation of the observability, quality and navigation metrics. This

formulation prioritises extending the scene observation over other considerations.

The termination criterion is described as ‘when the next best view does not provide

new information’ but is not quantified.

Adler et al. (2013) present an approach that detects gaps (i.e., unobserved

regions) in a scene observation using a particle simulation. The set of observed

points is downsampled to obtain a given minimum interpoint distance and each

point is assigned a radius. Particles of a given size are uniformly sampled above the

scene. Their descent through the scene volume is modelled with a physics simulation.

Particles which collide with an observed point and then continue to fall through

the scene volume indicate the existence of holes. The observation value of a voxel

is defined by the number of collisions between particles and observed points. This

value is increased for every collision between a point in the voxel and a particle that

successfully fell through the scene and whose final collision occurred in the voxel. A
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trajectory is planned to observe the holes by placing a waypoint at the centre of

each voxel with a nonzero value and ordering the waypoints by decreasing value.

Isler et al. (2016), in work later extended by Delmerico et al. (2018), present

different next best view selection metrics for use with a probabilistic voxel represen-

tation. This approach and subsequently discussed works using probabilistic voxel

representations commonly define next best view selection metrics using Information

Gain (IG). IG metrics evaluate views based on the expected information (i.e.,

entropy value) contained within the set of voxels that are likely to be visible. In

this work the entropy value of a voxel is determined by its occupancy likelihood

(i.e., the probability that it contains point measurements). The IG associated with

a view for each metric is determined from the visibility and entropy value of voxels.

The occlusion aware metric weights the occupancy value of each voxel by the

probability of it being visible from a given view. The unobserved voxel metric

restricts the occlusion aware evaluation to unobserved voxels. The rear side voxel

metric counts the number of unobserved voxels which are occluded and neighbour

occupied voxels. The rear side entropy metric weights the rear side voxel metric

with the occlusion aware metric. The proximity count metric evaluates the distance

of occluded voxels from the occupied voxel which obscures them up to a given

maximum distance. A combined metric is defined as a weighted sum of the other

metrics. A next best view is chosen to maximise the weighted difference between

one of the IG metrics and the navigation cost of reaching the view relative to

the cumulative IG and navigation cost for all views. The termination criterion is

satisfied when the greatest IG associated with a view falls below a given threshold.

Abduldayem et al. (2017) present a multistage observation approach using a

probabilistic voxel representation which leverages the symmetry of scenes to improve

observations. An initial observation of the scene is obtained using a predefined

trajectory planning method. Symmetry in the observation is detected and used to

generate a set of predicted points. An entropy value is computed for each voxel from

its occupancy likelihood. View proposals are sampled uniformly from unoccupied

voxels in the scene volume. A next best view is selected to maximise an IG metric
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that considers the cumulative entropy of all voxels visible from the view. A scene

observation terminates when the estimated change in voxel entropy for the next

best view remains lower than a given threshold for a specified number of views.

Mendoza et al. (2019) present a deep learning approach to NBV planning using

a three-dimensional Convolutional Neural Network (CNN). A training dataset

is generated by exhaustively searching the view space to determine the optimal

sequence of next best views to completely observe a known scene. This sequence of

views forms the classification set used for training the CNN. The CNN performance

is assessed based on whether views are selected in the optimal order.

Approaches with a volumetric representation that sample views from a surface

encompassing the scene are capable of obtaining observations with high coverage

of the scene volume. However, the completeness of observations depends on the

distribution of sampled views and high coverage of the scene volume does not

necessarily ensure good surface coverage. Views are proposed without knowledge of

the scene geometry and are not adjusted to account for occlusions.

2.4.2 Sampling Views with Path Planning

Approaches that use path planning techniques to sample views from the scene volume

build a planning graph from the current sensor position into known free space and

propose a view at each node which is evaluated with a next best view selection metric.

Potthast and Sukhatme (2011) and Potthast and Sukhatme (2014) present an

approach which uses a probabilistic voxel representation and samples views for

trajectories using the Probabilistic Road Map (PRM) planner (Kavraki et al. 1996).

The occupancy probability of each voxel is updated by applying a stochastic sensor

model, defined as a Gaussian probability density function, to sensor measurements.

Voxels are classified as unobserved, occupied or unoccupied by thresholding their

occupancy probability. Views are sampled randomly in the workspace of the sensor

and checked for reachability constraints. The feasible set of views is connected

into a PRM graph. A next best view is selected to observe the greatest number

of unknown voxels. The best path from the current sensor pose to the next best
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view is found by maximising the total number of unknown voxels visible from

each view traversed in the graph.

Yoder and Scherer (2016) present an approach for observing large-scale scenes

using an aerial platform. A region of interest, defined as a set of voxels that are

expected to be fully observed, is specified within the scene volume. The existing

occupied, unoccupied and unobserved voxel classes are used in addition to a frontier

classification. A frontier voxel is defined as an unoccupied voxel which neighbours an

occupied voxel and an unobserved voxel which are themselves neighbours. The IG

for each view is evaluated based on the number of visible frontier voxels. Visibility

is quantified by considering the distance of a frontier voxel from the view. Views

are sampled around the scene with the SPARTAN path planner (Cover et al. 2013).

The next best view is selected using a weighted sum of the IG and navigational cost.

A scene observation terminates when no sampled views have a given minimum IG.

Bircher et al. (2016) and Bircher et al. (2018) present an approach that

incrementally plans a trajectory to observe a scene using the RRT algorithm

(LaValle 1998). A node in the RRT tree represents the position of a view proposal

with an associated orientation that is also sampled. Views are proposed by growing

an RRT tree from the current sensor position into unoccupied voxel space for a

given number of view proposals or until a view proposal is found with a nonzero

IG. The IG metric is defined by the cumulative volume of unobserved voxels visible

from the views traversed in the tree between the current position and a given view.

The next best view is selected to be the view with the highest IG and the first view

along this path is obtained by the sensor. The voxel grid is then updated and a new

RRT tree is grown. The scene observation terminates if no views with a nonzero IG

are found after sampling a specified maximum number of view proposals.

Selin et al. (2019) present an approach which scales efficiently to observing large

scenes by using a continuously valued IG function and sparse raycasting to evaluate

view proposals sampled from free space in a scene with RRT. This work improves

upon the approach presented by Bircher et al. (2016) and Bircher et al. (2018). The

positions of view proposals are given by the RRT tree nodes. The best orientation for
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each view is determined by discretising the space of potential orientations around the

view and choosing the discrete orientation with the maximum IG. The continuously

valued IG function is a Gaussian Process (GP) (Rasmussen and Williams 2006)

defined using a set of frontier views sampled by RRT trees from previous iterations.

The IG for a new view is given by the posterior mean of the GP if the posterior

variance at that point is below a given threshold. If not, it is computed using a

sparse raycasting method and the view is added to the set of frontiers defining the

GP. The IG of a view is computed with sparse raycasting by identifying regions of

unobserved space within the view frustum and computing their cumulative volume

with cubature integration. A next best view is selected from a union of the frontier

and currently sampled view sets to maximise the IG. The scene observation is

terminated when no view proposal has an IG value above a given threshold.

Vasquez-Gomez et al. (2017) and Vasquez-Gomez et al. (2018) present approaches

for planning views in the state space of a robotic platform. Vasquez-Gomez et al.

(2017) use random sampling to obtain a set of view proposals while Vasquez-Gomez

et al. (2018) present an RRT-based sampling method. The IG for each view is

evaluated based on the amount of overlap with previous views, the number of visible

unobserved voxels, the distance from the current robot state and whether the view

is reachable. The next best view is chosen to maximise the product of these factors.

In both cases a path to the next best view is planned using RRT. Termination

criteria are presented based on a minimum number of visible unobserved voxels

and whether there are any remaining reachable view proposals.

Volumetric approaches that sample view proposals using path planning tech-

niques can typically obtain greater scene coverage than those that sample views

from a surface encompassing the scene. Sampling views within unoccupied regions

of the scene volume increases the likelihood that surfaces with restricted visibility

from certain view orientations, often caused by self-occlusions, will be observable.
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2.4.3 Proposing Views using Scene Information

Approaches that propose views using scene information can often obtain high-quality

observations more efficiently than those that propose views with sampling-based

methods. Observations are more efficient as fewer views need to be evaluated and

higher quality as views are proposed using existing knowledge of the scene structure.

Connolly (1985) also presents an approach for proposing views based on scene

information. Views are proposed and a next best view is selected based on the

number of unobserved voxel faces oriented in each direction within the scene

volume. Occlusions from occupied and other unobserved voxels are accounted for

by only counting faces neighbouring unoccupied voxels. These counts represent the

number of unobserved voxels visible from each side of the scene volume. Views

are initialised to observe each corner of the scene volume so that multiple sides

are visible simultaneously. The next best view is selected to have the greatest

cumulative count of visible faces over its three adjacent sides. A similar approach is

presented by Wong et al. (1999) but theirs does not account for occluding voxels.

Daudelin and Campbell (2017) present an approach that proposes views within

a discretised bounding box encompassing part of the scene volume. This approach

uses a probabilistic voxel representation and a frontier voxel classification. This

classification differs from the one presented by Yoder and Scherer (2016) as frontiers

are defined as unobserved voxels with both occupied and unoccupied neighbours.

Next best views are selected using an IG metric that evaluates the cumulative value

of observing every voxel in the scene from each view. The value of observing a

target voxel from a given view is the product of its occupancy likelihood with the

probabilities that it contains a scene surface and is visible from the view.

The scene surface probability (i.e, the probability that a voxel contains a scene

surface) is equal to the occupancy likelihood for observed (i.e., occupied or known

unoccupied) voxels. The scene surface probability for an unobserved voxel is defined

by an exponential decay function based on its distance from the closest frontier voxel.

The probability that a target voxel is visible from a given view is the product of one

minus the scene surface probability for each voxel between the view and the target
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voxel. The bounding box for proposing views is initially defined to encompass all

occupied voxels in the scene and then expanded to include all nearby voxels within a

given distance. The bounding box is discretised at a specified resolution and a view

is proposed at the centre of each discrete cell. A next best view is chosen from the

set of view proposals to maximise the IG metric. The scene observation terminates

when the maximum IG associated with a view falls below a given threshold.

Monica and Aleotti (2018a) present an approach which identifies frontier voxels,

as defined by Yoder and Scherer (2016), and proposes views to observe these voxels.

The orientation of the view proposed to observe a frontier voxel is defined as the

negative of a weighted average of the estimated normals for its neighbouring voxels.

The view position is determined by moving a specified distance from the voxel

centre in the direction of the estimated normal. An additional complement of views

can also be sampled within a given solid angle of each view to ensure observation.

Frontier voxels that are sufficiently close with similar normals are clustered together.

The saliency of scene regions is computed by segmenting the point measurements

and determining a saliency value for each segment. The segments are then ordered

by decreasing saliency. The view proposals associated with the frontier voxels whose

points are part of the most salient segment are selected. The next best view is

selected as the view with the greatest number of visible frontier voxels. If no view

exceeds a given threshold the view proposals from the next most salient segment

are considered. The scene observation terminates after a fixed number of views.

Volumetric approaches that propose views using knowledge of the scene structure

obtained from previous measurements can efficiently obtain high-quality observations.

Computational efficiency is improved as it is only necessary to evaluate views that

will improve the scene observation. More accurate measurements can be obtained

by using geometric scene information to propose views with better surface visibility.

The fidelity of the geometric information used is limited by the voxel resolution.
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2.5 Surface Representations

NBV planning approaches using surface representations (Reed and Allen 2000;

Hollinger et al. 2012; Khalfaoui et al. 2013; Roberts et al. 2017; Peng and Isler 2019)

connect sensor measurements into a triangulated mesh that aims to approximate the

scene geometry. This can provide high-fidelity information on the scene structure

when proposing views, selecting a next best view and defining termination criteria

based on observation quality. Occlusions are identified by raycasting the mesh.

Mesh boundaries and measurement density can be used to consider scene coverage

when proposing and selecting views or define quality-based termination criteria.

Most approaches using a surface representation (Reed and Allen 2000; Hollinger

et al. 2012; Roberts et al. 2017; Peng and Isler 2019) utilise a multistage observation

that requires an initial survey of the scene to be captured using a manual or

preplanned trajectory. This can restrict their applicability to autonomous systems.

Khalfaoui et al. (2013) do not use a multistage observation but state that their

approach is limited to scenes with smooth and continuous geometry.

Kriegel et al. (2011) also present a surface-based approach but this was extended

to a combined representation in subsequent work (Kriegel et al. 2012; Kriegel et al.

2015) that will be discussed in its entirety in Section 2.6.

Reed and Allen (2000) present an approach that uses a mesh to represent both

observed and occluded surfaces. An initial model of the scene is obtained from a

set of predefined views. The point measurements are connected into a triangulated

mesh after each view is obtained. The mesh edges are then extruded along the view

orientation until they intersect with the scene boundary. This produces a closed

mesh consisting of observed surfaces represented by triangles whose vertices are all

point measurements and occluded surfaces whose triangulated faces contain at least

one vertex from the scene boundary. This representation is updated to incorporate

new measurements after each view is obtained. The view planning objective is to

improve scene coverage by observing the occluded surfaces. While most approaches

discretely propose a set of independent views, this work computes a continuous

plan volume which can then be discretised to obtain individual views.
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The plan volume is defined by the intersections between imaging, occlusion

and placement volumes. The imaging volume is the space from which the target

(i.e., occluded) surfaces can be observed. The occlusion volume is the space from

which the target surfaces are unobservable. The placement volume is defined by the

reachability constraints of the sensor. The plan volume is given by the intersection

of the placement volume with the set difference between the imaging volume and

the occlusion volume. A set of views is obtained by discretising the plan volume.

The next best view is chosen from this set to observe the greatest area of occluded

surfaces. A fixed number of views is used for the experimental results presented

but the use of a termination criterion based on a threshold of the number or area

of remaining occluded surfaces is also discussed.

Hollinger et al. (2012) present an approach which models uncertainty in the

surface representation of a scene and plans views to reduce this uncertainty. This

approach requires that a coarse mesh reconstruction of the scene is obtained using a

manual survey. Uncertainty in the mesh is modelled using Gaussian process implicit

surfaces. The model considers both the density of points in the mesh and variability

in the triangulated surface normals. Mesh regions with sparser measurements or

a greater variation in surface normals have higher uncertainty. A set of views is

proposed to observe the scene such that each point in the mesh is visible from a

given minimum number of views. Two different next best view selection metrics are

presented to reduce coverage-based uncertainty (i.e., increasing the mesh density)

and variance-based uncertainty (i.e., reducing the variation in surface normals).

These metrics are compared experimentally using a random view selection metric

as a baseline. Termination criteria are presented based on a fixed number of views

and a minimum threshold in uncertainty reduction.

Roberts et al. (2017) present an approach to trajectory optimisation for obtaining

multiview stereo reconstructions of large-scale scenes. An initial scene observation

is obtained by traversing a preplanned view trajectory to capture a set of images

that is processed offline to compute a surface mesh. This initial observation

determines a coarse estimate of the scene geometry to identify free space and inform
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the computation of an optimised view trajectory. The set of view proposals is

obtained by taking the Cartesian product between independently sampled sets of

view positions and orientations. The view positions are sampled uniformly from the

scene volume and the view orientations are uniformly sampled from a hemisphere

encompassing the scene to point towards the scene centre. View proposals that do

not lie in free space, as defined by the initial surface mesh, are rejected.

The value of each view proposal is quantified by assessing the visibility of a set

of points uniformly sampled from the initial surface mesh. Each sampled point is

encompassed by a hemisphere whose base lies on the triangulated mesh surface. A

ray is cast from each view proposal to every sampled point. The point of intersection

between a ray and the hemisphere of a sampled point defines a circular disk. The

radius of this disk is defined by the view distance and the observation angle (i.e., the

angle between the view orientation and the local surface plane). The value of each

view proposal is given by the cumulative area of the circular disks for all points.

The set of view proposals is subsampled before the trajectory optimisation stage by

greedily selecting the best view orientation associated with each view position. An

optimised trajectory is computed from this subset of view proposals to maximise the

additive value of each view visited while satisfying a specified distance constraint.

Peng and Isler (2019) present a similar approach to obtaining large-scale

multiview stereo reconstructions as Roberts et al. (2017). An initial scene observation

is also required and obtained by traversing a preplanned view trajectory. Their key

contribution is a method for proposing views that accounts for the scene geometry.

View proposals are sampled from a manifold encompassing the scene. This is a

smooth surface defined by the convex hull of the point set produced by moving each

vertex in the initial mesh a given distance in the direction of its surface normal.

The coverage and quality of each face in the mesh is considered when sampling

views from the manifold. Coverage is determined by the number of views within the

visibility cone of a face. This is a cone of unit height with its apex at the centre of

the face and an apex angle equal to the angle between the views from which the face

was initially reconstructed. The quality of a face is defined as the coverage per unit
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area of the face and weighted by the visibility angle to encourage the observation of

poorly triangulated surfaces. View proposals are sampled from the manifold such

that the coverage of each face exceeds a given threshold. The orientation of each

view is chosen to maximise the observation of low quality faces. An optimal path

for traversing the views is found by weighting the distance between views by the

quality of faces visible from intermediate views along the straight line path. This

prioritises paths that obtain greater coverage of poorly observed surfaces.

Khalfaoui et al. (2013) present an approach that does not require a multistage

scene observation but is restricted to observing scenes with smooth surface geometry.

The visibility of triangulated surfaces, referred to as surface patches, in the mesh

representation is classified based on the angle between their surface normal and the

view orientation. Surfaces whose visibility angle is greater than a given threshold

are classified as barely visible while those with a sufficiently small angle are classified

as well visible. The visibility of well visible surfaces is verified using raycasting. A

set of potential views are proposed by applying mean shift clustering to the normals

associated with the set of barely visible surfaces. The next best view is chosen

to be the view in this set associated with the largest cluster of normals as the

greatest number of barely visible surfaces should be observable. A minimum distance

constraint between observed views is used to ensure their spatial distribution around

the scene and define the termination criterion. A scene observation terminates

when no remaining view proposals satisfy the distance constraint.

NBV planning approaches with surface representations are often capable of ob-

taining higher quality scene observations than those using volumetric representations

as they consider the scene geometry when proposing and selecting views. However,

the multistage observations used by most approaches require human intervention,

precluding deployment on autonomous sensor platforms, or have restrictions on

permissible scene geometry (e.g., Khalfaoui et al. 2013).
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2.6 Combined Representations

NBV planning approaches using combined representations aim to leverage the

advantages of multiple representations while mitigating their limitations. Most of

these approaches combine surface and volumetric representations (Low and Lastra

2006; Krainin et al. 2011; Kriegel et al. 2012; Kriegel et al. 2015; Dierenbach et al.

2016; Song and Jo 2018) to utilise knowledge of the surface geometry and the

observation state of scene volumes when proposing views, selecting a next best view

and defining termination criteria. Monica and Aleotti (2018b) present a hybrid surfel

representation which fuses concepts from surface and volumetric representations.

Karaszewski et al. (2012) and Karaszewski et al. (2016b) combine structured

and unstructured representations to perform multistage observations that acquire

increasingly higher resolution scene models at each stage using different sensors.

Low and Lastra (2006) present a hierarchical approach which represents the scene

using a combination of voxels and surface patches. The NBV planning objective is to

obtain a given minimum density of point measurements within each occupied voxel.

Surface patches are defined to represent points in occupied voxels with insufficient

density. A surface patch is a bounding rectangle with a known surface area, an

average point density and a density deficit equal to the difference between the

minimum required density and the average density of the patch. Views are proposed

from feasible view volumes represented with a voxel grid. The value of a view

is determined by evaluating the sensor constraints and the estimated increase in

measurement density for a target surface patch. The value of observing each patch

from every view volume is evaluated. The hierarchical nature of the approach means

that view-patch pairs with zero value can be divided into smaller view volumes or

surface patches until a given minimum size is reached or a nonzero value is obtained.

The next best view is selected to maximise the view value. A scene observation

terminates when all occupied voxels satisfy the specified measurement density.

Krainin et al. (2011) present an approach that uses an underlying voxel repre-

sentation to encode information on a maximum likelihood surface estimated from

point measurements. Voxels are classified as unobserved, unoccupied or occupied if
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they contain point measurements. View proposals are sampled uniformly from the

surface of a sphere encompassing the scene with a minimum angular separation. A

next best view is selected from the set of view proposals to provide the greatest

predicted reduction in uncertainty for the estimated surface. A scene observation

terminates when the predicted reduction in surface uncertainty falls below a given

threshold for all remaining view proposals.

Kriegel et al. (2012) and Kriegel et al. (2015) extend earlier work using a surface

representation (Kriegel et al. 2011) to present an approach using a combined repre-

sentation. The surface-based approach proposes views to observe the boundaries of a

triangulated mesh. Boundary edges are classified as left, right, top or bottom based

on their orientation relative to the current sensor pose. A estimate of the boundary

surface trend is computed for each edge set. Views are proposed to observe the

unknown region beyond each boundary. Every view is oriented to observe a point

sampled from the trend surface at a specified distance along the estimated normal.

Points are sampled at a given step distance moving away from the observed mesh

in a perpendicular direction to the boundary. New views are proposed until there

is insufficient overlap between the observed mesh and sensor field-of-view. Next

best views are selected from the set of view proposals in order of boundary class

(i.e., left, right, top, bottom) and then increasing distance from the boundary. New

views are proposed after every view which obtains a given minimum percentage of

new measurements. The scene observation terminates when no views remain.

Kriegel et al. (2012) combine this surface-based approach with a probabilistic

voxel representation. An IG metric for selecting next best views is presented which

aims to maximise the cumulative entropy value of all voxels visible from a given

view, as computed from their occupancy likelihood. A termination criterion is

defined as a threshold on the percentage of boundary edges in the mesh. Kriegel

et al. (2015) extend this work by selecting next best views using a weighted sum

of the IG and a surface quality metric. The surface quality metric is defined as

the sum of the boundary edge percentage and an average relative point density.

The point density is computed voxelwise and specified as a relative proportion of a
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given maximum density. It is weighted by the angle of incidence between the view

orientation and the average normal of visible surfaces. An approach for assessing

mesh coverage is presented to detect and fill holes in the mesh. Termination criteria

are presented as thresholds on mesh coverage and the average relative point density.

Dierenbach et al. (2016) present an approach which learns a model of the

scene surface from measurements using the Growing Neural Gas (GNG) algorithm

(Fritzke 1994). The model is defined by a graph of connected nodes similar to a

mesh representation. Every observed point is associated with the closest node. A

Voronoi tessellation of the scene volume is computed from the model such that every

node in the graph is the centroid of a Voronoi cell. The objective of this approach

is to obtain a given minimum point density within each cell. Views are proposed to

observe each node with an orientation equal to a surface normal estimate computed

from the point measurements within their cell. A view is positioned at a given

distance along the normal defined by the sensor parameters (i.e., resolution and

field-of-view) and scene size. A next best view is selected to observe the Voronoi cell

with the lowest density. The scene observation terminates when a given minimum

point density has been obtained within each Voronoi cell.

Song and Jo (2018) present a combined approach which extends earlier work

using a volumetric representation (Song and Jo 2017). The volumetric approach

samples a set of view proposals using RRT* (Karaman and Frazzoli 2011). A next

best view is selected from this set to maximise the number of visible unobserved

voxels weighted by the view distance from the current sensor position, similar to

the approach presented by Bircher et al. (2016) and Bircher et al. (2018). The

shortest path to the next best view is planned using the RRT* tree. A new set

of views is proposed within a given radius of the path. The number of frontier

voxels, as defined by Daudelin and Campbell (2017), visible from each view is

computed and each frontier is associated with the view that can observe it and

the greatest number of other frontiers. Each view is weighted by its distance

from the path. A coverage-sampling problem is solved to find the set of views

with the smallest cumulative weight that can observe all of the frontiers. This
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is repeated using smaller sampling radii until coverage of all the frontiers is no

longer achievable. The shortest path to the next best view is computed which

also visits these subviews. The scene observation terminates when the percentage

of unobserved voxels falls below a given threshold.

Song and Jo (2018) combine their volumetric approach with a surface representa-

tion computed from point measurements as a maximum likelihood estimate, similar

to the representation presented by Krainin et al. (2011). Points are sampled from

the estimated surface and used to compute a Poisson reconstruction (Kazhdan et al.

2006). Each point is assigned a confidence value based on the average likelihood

weight of its neighbours. Points with values lower than a given threshold are

selected as targets for observation. These target points are clustered based on their

distance and the angle between their surface normals, as defined by the Poisson

reconstruction. Each cluster is represented by its average point. Views are sampled

within a view frustum centred on each cluster and pointing in the direction of its

normal. Views that are too far from the current path are excluded. Clusters with

no feasible views are removed. The shortest path which traverses at least one view

per cluster is computed. A set of subviews along this path are then found using the

original approach (Song and Jo 2017). No new termination criteria is presented.

Monica and Aleotti (2018b) present a NBV planning approach using a surfel

representation. Surfels are circular disks with a given position, radius and normal

which are extracted from an underlying volumetric representation. Surfels which

lie on the boundary between unobserved and unoccupied voxels are identified

and classified as frontels. Next best views are selected to observe the set of

visible frontels with the greatest surface area. View proposals are sampled from

a sphere encompassing the scene. A termination criterion is defined based on

the minimum observable frontel area.

Karaszewski et al. (2012) present a multistage observation approach for obtaining

high resolution models of real world scenes in a controlled workspace. The approach

combines a volumetric representation with a point classification based on point

density. Initial observations of the scene are obtained using a preplanned view
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trajectory until points are observed and at least one voxel is occupied. The NBV

planning approach is then activated. At each iteration the set of point measurements

is downsampled to obtain a given minimum interpoint distance. Points in this set

with a point density greater than a specified minimum in a small radius and less than

a given maximum density in a large radius are selected as targets for observation. A

view is proposed to observe each point with an orientation defined by a normal vector

computed for the point and a view position at a fixed distance from the point in the

normal direction. A secondary NBV planning stage is used to observe sparse regions

denoted by points with an insufficient density of measurements within a given radius.

This radius is computed from the average interpoint distance for all measurements.

Views are obtained until no sparse regions or reachable view proposals remain.

Karaszewski et al. (2016b) extend this approach to include a surface representa-

tion. The objective is to obtain an initial scene observation using a low resolution

sensor with a large field-of-view which can then be refined using a high resolution

sensor with a small field-of-view. The initial scene observation is performed using

the original approach (Karaszewski et al. 2012). The refined observation is then

performed based on a Poisson surface reconstruction of the initial observation.

Points on the reconstructed surface are clustered based on their associated normals

and a view is proposed to observe each cluster based on the average surface normal.

The shortest path traversing this set of views is then computed and obtained.

Approaches that use combined representations can often obtain more complete

and accurate scene observations than those that rely on a singular representation.

This performance improvement typically incurs an increase in computational cost for

maintaining multiple representations and the fusion of different metrics for selecting

a next best view can require parameter tunings that do not generalise between scenes.

2.7 Discussion

The choice of a suitable approach and representation for obtaining scene observations

typically depends on the availability of an a priori scene model, the structural

complexity of the scene being observed, the desired resolution for an observation and
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the constraints of the sensing system used. Model-based approaches are well suited

to obtaining high-quality observations for the purpose of comparing a manufactured

part with a known model but this requires a priori scene knowledge that is not

available for unknown scenes. Model-free approaches address this limitation by

proposing and selecting views without requiring any a priori scene information.

Approaches with global representations are often a suitable choice for obtaining

high-quality observations of scenes with simple surface geometry. Their explicit

consideration of the global connectivity between scene surfaces makes it possible to

obtain complete scene observations without gaps in the observed surface geometry.

However, the global assumptions imposed on the scene structure typically prevent

these approaches from observing scenes with discontinuous surface geometry.

Approaches with volumetric representations are well suited to observing scenes

for the purpose of determining the occupancy of scene volumes. They are capable

of obtaining high-resolution observations of small-scale scenes when it is possible

to represent the scene volume with a dense voxel grid (i.e., a small voxel size).

However, due to the computational complexity of evaluating a voxel representation

they typically do not scale to obtaining high-resolution observations of large-scale

scenes as it is necessary to use a sparser voxel grid (i.e., a larger voxel size and

lower resolution) in order to maintain a reasonable computation time.

Approaches with surface representations are often a good choice for obtaining

high-quality observations of large-scale scenes as they can utilise high-fidelity

information on the scene structure that is encoded in a triangulated mesh. However,

in most cases it is prohibitively expensive to compute the triangulation of a mesh

between dense sensor measurements online in real-time. To mitigate this cost many

surface approaches utilise a multistage observation. Sparse measurements of the

scene surfaces are first obtained by performing a manual survey and used to compute

a rough triangulated mesh offline. The views for a secondary observation are then

proposed based on this mesh to obtain dense sensor measurements. As the initial

manual scene survey typically requires the oversight of a human operator it is often

not possible to deploy surface approaches on an autonomous sensing system.
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Approaches with combined representations aim to leverage the strengths of

different representations while mitigating their limitations. Approaches using both

volumetric and surface representations (e.g., Kriegel et al. 2015; Song and Jo

2018) can propose and select views that obtain good coverage of both the scene

volume and surface structures. This improvement in observation performance comes

with an increase in computational cost from maintaining and evaluating multiple

representations. Combined approaches often do not generalise easily between scenes

as determining a suitable combination of different next best view selection metrics

and termination criteria introduces additional complexity in their parametrisation.

The unifying trait of the approaches discussed in this literature review is that

they all use structured scene representations. The high-level organisation of point

measurements provided by imposing an external structure on the scene makes it

possible to clearly define the coverage of an observation and allows the visibility

of unobserved regions and surface boundaries to be evaluated using raycasting.

The assumptions made by structured representations typically aim to simplify the

problem of considering scene coverage when proposing and selecting next best views

at the expense of reducing the fidelity of the scene information represented and

incurring a computational cost to maintain an external scene structure.

Global representations consider all sensor measurements to be part of a globally

connected scene structure. This relies on an assumption that the scene being

observed consists of surfaces with continuous geometry. When observing scenes

with discontinuous geometry for which this assumption is invalid it may not be

possible to obtain a complete observation.

Volumetric representations approximate the observation state of scene regions

by considering the occupancy of point measurements within voxels. The accuracy of

the encoded observation states is determined by the voxel resolution. Using smaller

voxels (i.e., a higher resolution) increases the fidelity of the occupancy information

but also increases the number of voxels. This means a greater computational

cost is incurred when raycasting the voxel grid, as discussed by Low and Lastra

(2006) and Monica and Aleotti (2018b).
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Raycasting is performed to update the observation state of voxels with new

measurements and evaluate the visibility of voxels from proposed views when

selecting a next best view. The cost of raycasting a voxel grid increases cubically with

the voxel resolution (i.e., as the voxel size decreases) and linearly with the number

of views that require raycasting. This cost is partially mitigated by volumetric

approaches that sample views using path planning techniques or propose views

based on scene information as a smaller set of view proposals needs to be evaluated

when selecting a next best view. Work has also been presented on improving

the efficiency of raycasting for volumetric representations by Low and Lastra

(2006), Vasquez-Gomez et al. (2013), and Selin et al. (2019) but such techniques

are not yet widely adopted.

Surface representations aim to approximate the geometry of observed surfaces

by inferring the connectivity of a triangulated mesh between point measurements.

The validity of approximated surfaces depends on the structural assumptions made

when connecting the mesh and the accuracy of the sensor measurements. They

can deviate significantly from the underlying scene structure when using invalid

connectivity assumptions or measurements from a noisy sensor. This can negatively

impact the proposal and selection of views as the mesh boundaries may not denote

the true coverage of a scene observation. Erroneous surface triangulations can

produce invalid results when detecting occlusions and evaluating scene visibility.

Mesh computation is often performed offline due to the computational cost

of obtaining a triangulated mesh from dense sensor measurements in real-time,

as discussed by Peng and Isler (2019). Some combined approaches with surface

representations compute a mesh online but these use a downsampled set of points

to reduce the cost (e.g., Song and Jo 2018) or techniques for incremental mesh con-

struction (e.g., Kriegel et al. 2011 use the method presented by Bodenmüller 2009).

Combined representations typically represent scene observations using both a

voxel grid and a triangulated surface mesh. An increased computational cost is

incurred by maintaining both representations but it is possible to mitigate the

structural assumptions imposed by each individual representation. This is often
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achieved by proposing and selecting views that can extend coverage of the surface

mesh while also observing voxels whose visibility was occluded from previous views.

Many of the limitations associated with using structured scene representations

can be overcome by using an unstructured representation. In this type of represen-

tation information on the state of a scene observation is directly encoded by the

point measurements rather than being aggregated into an external structure. Fewer

assumptions are made about the scene geometry and a lower computational cost is

incurred as it is not necessary to maintain or raycast an external structure.

This thesis presents work on NBV planning with a novel unstructured density

representation. This representation is based on the idea that a sufficient condition

for obtaining complete scene observations is capturing a given minimum density

of measurements from visible scene surfaces. All information on an observation

is represented with a pointwise encoding and only point-based computations are

performed when maintaining and evaluating the representation. This means that

the computational cost of the representation scales with the number of observed

points rather than the size of an externally imposed structure and its associated

raycasting cost. Measurements are classified based on the local density of observed

points rather than being aggregated into an external structure so the fidelity of

scene information represented is not constrained by any structural resolution.

The proceeding chapter presents a NBV planning approach that uses this

novel representation. The density of measurements in the scene is represented by

classifying each observed point as a core, frontier or outlier based on the number of

neighbouring points with a given radius. A view is proposed to observe each frontier

point with an orientation defined by a normal estimated from local measurements

and a position at a given distance from the point in the normal direction. If point

measurements can not be obtained in the neighbourhood of a frontier point (i.e.,

the view is occluded) then the view can be adjusted until the frontier becomes

visible. A next best view is selected to observe a frontier point close to the current

sensor position while reducing the distance moved away from the initial view of the

scene. An observation terminates when all frontier points are successfully observed.
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This chapter presents the Surface Edge Explorer (SEE), a NBV planning

approach with a novel unstructured density representation. Information on the

state of a scene observation is directly encoded in the point measurements using a

density-based classification. Observed points are classified based on the number of

neighbouring measurements with a given resolution radius. This classification is

used to define a frontier between surfaces in the scene that are fully and partially

44
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observed. Sensor views are proposed to observe this frontier and expand the fully

observed surfaces. Views are selected and new measurements are obtained until

the entire scene is observed at the chosen resolution and measurement density. The

representation is computationally efficient to maintain as only local updates are

performed when new measurements are obtained. This enables SEE to obtain highly

complete observations of scenes at any scale (i.e., from bunnies to buildings).

The work in this chapter was first presented in Border et al. (2017) at the 2017

Joint Industry and Robotics CDTs Symposium and extended in Border et al. (2018)

at the 2018 IEEE International Conference on Robotics and Automation (App. B).

The experimental results presented in this chapter correct a mistake in Border

et al. (2018). The implementation of volumetric approaches which produced the

results in Border et al. (2018) used an erroneous sampling procedure that resulted in

a nonuniform distribution of views proposals being sampled from the view surface.

Experimental results presented in this chapter and throughout this thesis use a

corrected implementation that samples a uniform distribution of view proposals.

The remainder of this chapter is organised as follows. Section 3.1 presents a

review of existing NBV planning approaches that consider measurement density.

The methodology of SEE is presented in Section 3.2. The classification of point

measurements that defines a pointwise frontier between completely and partially

observed scene surfaces is discussed in Section 3.2.1. The process of estimating the

local surface geometry around frontier points is detailed in Section 3.2.2. The use of

these local surface geometry estimates for proposing views to improve the coverage

of a scene observation is explained in Section 3.2.3. The next best view selection

metric used by SEE is presented in Section 3.2.4. The technique used to apply

view adjustments when a target frontier point is not successfully observed from

its associated view is described in Section 3.2.5. The density-based termination

criterion used is presented in Section 3.2.6. An experimental comparison of the

observation performance for SEE and state-of-the-art volumetric NBV planning

approaches on four standard models and a full-scale building model is presented

in Section 3.3. The results are discussed in Section 3.4.
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The work presented in this chapter makes five key contributions:

1. A novel unstructured scene representation based on measurement density.

2. A method for proposing views directly from point-based scene information.

3. A novel technique for reactively handling occlusions that is capable of suc-

cessfully observing target surfaces by using incrementally adjusted views.

4. A termination criterion that considers observation completeness by ensuring

that a minimum measurement density is obtained for all observable surfaces.

5. Experimental results demonstrating that SEE is capable of obtaining scene

observations with similar or better coverage than state-of-the-art volumetric

approaches using fewer views and a significantly lower computation time.

3.1 Existing Methods

Approaches to NBV planning using structured representations have been presented

that consider measurement density (e.g., Low and Lastra 2006; Kriegel et al. 2015;

Dierenbach et al. 2016; Karaszewski et al. 2016b) but to the best of my knowledge

this is the first work on NBV planning to use a purely unstructured representation

that classifies the observation state of every point measurement based on the local

density of neighbouring measurements and uses this pointwise classification to

propose views, select a next best view and define a completion criterion.

The approach presented by Low and Lastra (2006) considers the average

measurement density on surface patches extracted from voxels. Dierenbach et al.

(2016) aim to obtain a minimum measurement density within Voronoi cells that

segment the scene volume. Kriegel et al. (2015) consider the average point density

within voxels when selecting next best views using a surface quality metric and

defining termination criteria. Karaszewski et al. (2016b) identify a set of boundary

points with low neighbourhood densities from a subset of point measurements and

propose views to observe these points. The radius and density are computed from

the sensor parameters and existing measurements rather than being user-specified.

The consideration of measurement density in SEE differs from these approaches

as it is used to define an unstructured representation that does not require any
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a priori assumptions about the scene structure. All knowledge of the scene is

computed pointwise so the fidelity of encoded information (e.g., measurement

density) is not limited by the size of voxels or the connectivity of a surface mesh.

This allows SEE to propose and select next best views that can improve a scene

observation until a given measurement density is achieved for all observable surfaces.

3.2 The Surface Edge Explorer (SEE)

SEE aims to obtain scene observations with a specified minimum measurement

density over all observed surfaces (Sec. 3.2.1). This measurement density is defined

by a resolution radius, r and target density, ρ, used to detect frontiers in the

measurements. The resolution radius should be sufficiently large to robustly

handle measurement noise while still being small enough to maintain computational

efficiency. The target density is chosen to be sufficiently large to classify points at

the specified resolution and attain a desired level of structural detail from the scene.

Frontiers are detected by classifying point measurements based on the number of

neighbouring points within the resolution radius. Points with sufficient neighbours

(i.e., the local density is greater than or equal to ρ) are classified as core points

and those without are classified as outlier points. Outlier points with both core

and outlier neighbours are then classified as frontier points. These frontier points

represent the boundary between fully and partially observed surfaces.

Observation coverage is improved by obtaining measurements of the scene

surfaces around frontier points (Sec. 3.2.2). Views are proposed to observe the

frontiers by estimating the local surface geometry from points in their r-radius

neighbourhoods. The surface geometry is described by a set of orthogonal vectors

computed from an eigendecomposition of the neighbouring points. These are used

to represent the local surface normal, a boundary between the fully and partially

observed surface regions and the direction of partial observation (i.e., the frontier).

A view is proposed to observe the local surface region around each frontier

point (Sec. 3.2.3). The view orientation is given by the estimated surface normal

so that it is orthogonal to the locally estimated surface geometry. This orientation
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is chosen to maximise surface coverage and improve measurement accuracy. The

view position is placed at a given view distance, d, along the surface normal. A

suitable distance can be specified empirically by the user or computed analytically

from the algorithm parameters and sensor properties, as discussed in Section 6.1.2.

Next best views are selected from the set of view proposals using a metric which

aims to reduce the sensor travel distance from both the current sensor position and

the initial view (Sec. 3.2.4). The objective is to penalise the selection of a series of

views that obtain measurements in a single direction without first capturing views

of partially observed surfaces that are proximate to the initial sensor position.

When a frontier point lies near a surface discontinuity (e.g., an edge or corner) it

is often not possible for a view with an orientation orthogonal to the surface on one

side of the discontinuity to observe the opposing side (Sec. 3.2.5). This can render

a successful observation of the frontier unobtainable as it is not possible to extend

the scene observation beyond the surface discontinuity. It is possible to obtain

a successful observation by iteratively adjusting unsuccessful views based on the

measurements obtained until the frontier point is observed or a sufficient number of

attempts have been made to classify it as an outlier. Points classified as outliers

are not reprocessed unless new measurements are obtained within their r-radius.

Next best views are selected until no frontier points remain and all measurements

have been classified as core or outlier points (Sec. 3.2.6). The extent of a scene

observation can be bounded by discarding all points outside of a given volume.

When obtaining some observations, in particular those using high-resolution

sensors or of large-scale scenes, it is necessary to enforce a minimum separation,

ǫ, between point measurements in order to maintain an upper bound on memory

consumption and computational cost. The size of this separation is typically chosen

based on the target density. In this case, new measurements are only added to the

pointcloud observation if their ǫ-radius neighbourhood contains no existing points.

An overview of SEE is shown in Algorithm 1. Sensor measurements are obtained

and processed until there are no remaining frontier points (Line 4). A set of

measurements, M , is obtained from the current view, v (Line 5). The measurements
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Algorithm 1 SEE(v0, r, ρ, d)

1: v← v0 ⊲ v is the current view and v0 is the initial view
2: f ← null ⊲ f is the target frontier point
3: P = C = F = O = ∅ ⊲ P is the complete point set, C is the core set,

F is the frontier set and O is the outlier set
4: while F 6= ∅ or f = null do
5: M ← get-measurements(v)
6: P,C, F,O ← classify-measurements(M,C,F,O, r, ρ)
7: if F 6= ∅ then
8: if f ∈ F then
9: v ← adjust-view(M,v, f)

10: else
11: Y ← estimate-geometry(P, F,v, r)
12: W ← get-view-proposals(Y, F, d)
13: v, f ← select-next-best-view(W,v, r)

14: return complete

are added to the pointcloud observation, P , and the classifications of core, C, frontier,

F , and outlier, O, points are updated (Line 6). If any frontier points remain after the

classifications are updated then a new view is chosen (Line 7). If the target frontier

point, f , associated with the current view was not successfully observed (i.e., it is

still classified as a frontier point) then the view is adjusted (Line 8–9). Otherwise a

new view is selected (Line 10). The local surface geometry around frontier points

is estimated from neighbouring points within an r-radius (Line 11). Views are

proposed to observe the frontiers based on the estimated surface geometry, Y (Line

12). A next best view is then selected from the set of view proposals, W , to improve

the scene observation around a target frontier point (Line 13). The scene observation

is considered complete when there are no frontier points remaining (Line 14).

3.2.1 Point Classification

Frontiers between fully and partially observed scene surfaces are identified by

performing classifications of point measurements based on the local measurement

density. Points are classified as either a core, frontier or outlier point based on the

number of neighbouring points, k, with a radius, r, of the point (Fig. 3.1). The

number of observed points in the r-radius is compared with the minimum number of

points, kmin, necessary to satisfy the desired point density, ρ, where kmin = 4
3
ρπr3.
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Figure 3.1: An illustration of the density-based classification approach used by
SEE. Points with a sufficient number of neighbours, kmin, in an r-radius are classified
as core points (black) while those without are outlier points (white). Points with
both core points and outlier points in their neighbourhood are frontier points (grey).

The approach used for density-based classification is based on the Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) algorithm present by

Ester et al. (1996). Point measurements, P := {pi}n
i=1 where pi ∈ R

3, are classified

as core points, C, frontier points, F , or outlier points, O. The point classifications

are complete and unique (i.e., every point is assigned to a single class) such that

P = C ∪ F ∪O and C ∩ F = C ∩O = F ∩O = ∅ . (3.1)

The set of points, Np, in the pointcloud within an r-radius of a point, p, is given by

Np := N(P, r,p) := {q ∈ P | ||q − p|| ≤ r} , (3.2)

where || · || denotes the L2-norm.

A point is classified as a core point if it has more than kmin neighbours,

C := {p ∈ P | |Np| ≥ kmin} , (3.3)

where | · | denotes the cardinality of a set.

It is classified as a frontier point if it has both core and outlier neighbours,

F := {p ∈ P | |Np| < kmin ∧ Np ∩ C 6= ∅ ∧ Np ∩ O 6= ∅} . (3.4)

Remaining points that are not classified as core or frontier points are outliers,

O = P \ (C ∪ F ) . (3.5)
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Algorithm 2 CLASSIFY-MEASUREMENTS(M,C, F,O, r, ρ)

1: V ← ∅ ⊲ V is the set of measurements that have been processed
2: kmin ← 4

3ρπr
3 ⊲ kmin is the number of neighbours required for a core point

3: P := C ∪ F ∪O ∪M ⊲ P is the complete point set, C is the core set, F is the
frontier set, O is the outlier set and M is the new point set

4: for all p ∈M do
5: if p /∈ V then
6: Q← N(P, r,p) ∪ {p}
7: for all q ∈ Q do
8: if q /∈ C then
9: Nq ← N(P, r,q)

10: if |Nq| < kmin then
11: if Nq ∩ C 6= ∅ and Nq ∩O 6= ∅ then
12: F ← F ∪ {q}
13: if q ∈ O then O ← O \ {q}
14: else
15: O ← O ∪ {q}
16: else
17: C ← C ∪ {q}
18: if q ∈ F then F ← F \ {q}
19: if q ∈ O then O ← O \ {q}
20: if q 6= p and q /∈ V then
21: Q← Q ∪Nq

22: V ← V ∪ {q}
23: return P,C, F,O

The procedure used for classifying the point measurements obtained from a view

is shown in Algorithm 2. When a view is obtained the set of new measurements,

M , is combined with the existing classification sets, C, F and O (Line 3). Each

new point, p ∈ M , is processed and added to either the core, frontier or outlier

point sets (Line 4). Any new point that has not yet been processed is added to

the (re)classification queue, Q, along with its neighbourhood points (Lines 5–6).

If a point in the queue is not a core point then it is (re)classified based on the

new measurements (Lines 7–9). Points with insufficient neighbours to be core

are classified as frontier points if they have both core and outlier neighbours or

otherwise as outlier points (Lines 10–15). Points with sufficient neighbours are

classified as core points (Lines 16–19). If a point has not yet been processed and it is

(re)classified as a core point then its neighbourhood is added to the (re)classification

queue and it is marked as processed (Lines 20–22).
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Classifying observed points based on the local measurement density distinguishes

scene regions that have a sufficient point density to be considered completely

observed (i.e., consist of core points) from those that require additional observations

(i.e., contain frontier and outlier points). Distinct classifications for frontier and

outlier points can be used to differentiate between sparse measurements from true

surfaces and points that are the product of sensor noise. Measurements that are

farther from previously obtained views are more likely to be the product of sensor

noise. Frontiers are therefore identified at the boundary between regions of core and

outlier points. These frontier points are used to propose views that will improve the

observation of a scene by considering the local surface geometry around each frontier.

3.2.2 Surface Geometry Estimation

A scene observation is improved by obtaining new measurements around frontier

points that can increase the local point density and expand the boundary between

partially and completely observed surfaces. Views from which suitable measurements

can be obtained are identified by considering the local surface geometry and the

distribution of measurements around frontier points. A planar estimate of the local

geometry is used to define a surface normal. This estimate is used in conjunction

with the distribution of measurements in the frontier point neighbourhood to identify

a frontier vector that points towards the region of partial observation and a boundary

vector that points along the border between partially and fully observed surfaces.

A planar estimate of the local geometry around a frontier point, f , is computed

via an eigendecomposition of a matrix representation of its point neighbourhood,

D := [p1 − f , ...,pn − f ] ∈ R
3×|Nf | , (3.6)

where pi ∈ Nf are points from the r-radius neighbourhood computed using (3.2).

The decomposition of the covariance matrix, A := DDT, produces eigenvalues,

Λ = {λ1, λ2, λ3} and eigenvectors, Υ = {υ1,υ2,υ3}, satisfying the eigenequation,

Aυi = λiυi , i = {1, 2, 3} . (3.7)



3. Planning Next Best Views with an Unstructured Representation 53

frontier

outlier

core

eb

ef

en

Figure 3.2: An illustration of the local surface geometry estimate defined by an
orthogonal set of vectors. These vectors are orientated normal to the estimated
surface, en (out of the page), point towards the region of partial observation, ef ,
and lie along the boundary between fully and partially observed scene regions, eb.

The matrix A is real and orthogonal. This means that the set of eigenvectors

form an orthonormal basis (i.e., three mutually orthogonal unit vectors) of D. Each

eigenvector describes one component of the observed surface geometry (Fig. 3.2).

The normal vector, en, is orthogonal to the surface plane. The frontier vector, ef , lies

in the surface plane and points in the direction of partial observation. The boundary

vector, eb, points along the border between partially and fully observed surfaces.

The assignment of eigenvectors as surface geometry components is computed

based on their eigenvalues, the angle between a vector and the observing view

orientation, φo, and the mean point for the r-radius neighbourhood of the frontier.

The normal vector, en, points along the axis associated with the least variance in

neighbouring points. It is assigned to the eigenvector with the minimum eigenvalue,

en = {υi | λi = min {Λ}} , (3.8)

and given a sign to point in the opposite direction to the observing view orientation,

en · φo < 0 . (3.9)

The frontier vector, ef , points towards the partially observed region of the scene

and is identified by considering the mean of the point neighbourhood for the frontier,

p̄ =
1

|Nf |
∑

p∈Nf

(p− f) . (3.10)
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It is an unassigned eigenvector that has the greatest dot product with the mean point,

ef = arg max
υ ∈ Υ\en

(p̄ · υ) , (3.11)

and points in the opposite direction to the vector from the frontier point to the

mean point, such that it points into the partially observed region of the scene,

ef · p̄ < 0 . (3.12)

The boundary vector, eb, is locally tangential to the border between the density

regions and is assigned to the remaining eigenvector. The direction of the boundary

vector is given by the cross product of the normal and frontier vectors,

eb := en × ef . (3.13)

These orthogonal vectors represent the estimated surface geometry and distri-

bution of neighbouring measurements around a frontier point. They are used to

inform the proposal and adjustment of views. The initial view of a frontier point is

proposed using the normal vector in order to maximise coverage of the surrounding

scene surfaces. An adjustment of the view is computed using the frontier and

boundary vectors if the initial view does not successfully observe the frontier point.

3.2.3 View Proposals

The coverage and accuracy of the measurements obtained from a view depends on

the distance and angle of the sensor pose relative to the observed scene geometry. A

view, v = {x,φ}, is defined by a position, x, and an orientation, φ. Views that are

farther away from the scene surface can typically obtain greater coverage as a larger

region of the scene is visible within the viewing frustum of the sensor. However,

the measurement accuracy of many depth sensors degrades with distance (e.g.,

quadratically for stereo cameras) and therefore it is often desirable to use shorter view

distances. The surface coverage and measurement accuracy obtained from a given

view position is greatest for most sensors when the view orientation is orthogonal to

the surface being observed. This provides the largest area of intersection between
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Figure 3.3: An illustration of the method for proposing views. A view, v = {x,φ},
is proposed using the estimated local surface geometry, en, ef and eb to observe the
scene surfaces around each frontier point (grey). The view orientation, φ, is given
by the inverse sign of the normal vector, φ = −en. The view position, x, is set at a
given view distance, d, from the frontier point along the normal vector, en.

the viewing frustum and scene surfaces within the view distance when the scene

geometry is locally planar. Sensors that compute depth measurements using feature

triangulation (e.g., stereo cameras) can obtain greater measurement accuracy when a

view is orthogonal to the surface as matching features can be identified more robustly.

Views are proposed to improve the observation of a scene by obtaining measure-

ments from the surfaces around frontier points. A view is proposed to observe the

scene around each frontier point based on the local surface geometry (Fig. 3.3).

Each view, v = {x,φ}, is positioned at a given view distance, d, from its

associated frontier point, f , along the estimated normal vector, en,

x = f + den , (3.14)

with a view orientation given by the inverse sign of the normal vector,

φ = −en . (3.15)

The proposed views are centered on their associated frontier points rather than

being offset in the direction of partial observation (i.e., along the frontier vector) to

ensure that the density of sensor measurements obtained from a view is greatest

within the r-radius neighbourhood of its corresponding frontier point. When a
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proposed view is offset from its target frontier then the overlap between this r-radius

neighbourhood and the distribution of points within the sensor frustum decreases.

This effect is particularly significant for sensors with a narrow field-of-view. Not

using an offset therefore mitigates the risk of insufficient measurements being

obtained in the neighbourhood of a frontier point for it to be successfully observed.

Sensor measurements captured from the proposed views can often successfully

observe frontier points and improve the scene observation when a good estimate of the

local surface geometry is obtained. Next best views are selected from the set of view

proposals to try and improve coverage of the scene around nearby frontier points.

3.2.4 Next Best View Selection

Next best views are selected to improve the observation of a scene. The most efficient

observations can be obtained by considering scene coverage and observation cost

when selecting views. The challenge of assessing scene coverage with an unstructured

representation is investigated in Chapter 5. The view selection metric presented

in this chapter is formulated to reduce the observation cost, as quantified by the

sensor travel distance required to obtain a scene observation. This quantification is

used as the distance travelled between views when observing a scene determines the

operation time and energy consumption utilised by a sensor platform (e.g., a drone).

The view selection metric selects a next best view from the set of view proposals,

W := {g(f ∈ F )} , (3.16)

where g maps frontier points to the view proposals discussed in Section 3.2.3.

Views are selected with the aim of obtaining a scene observation using the

shortest overall travel distance by considering the incremental and origin distances

for a set of view proposals. The incremental distance of a view proposal is given by

the difference between the current view position and the position of the proposed

view. The origin distance of a view proposal is given by the difference between

the position of the initial view of the scene and the position of the proposed view.

Reducing the incremental distance limits how far the sensor travels between views.



3. Planning Next Best Views with an Unstructured Representation 57

Accounting for the origin distance prioritises the selection of next best views that are

close to the position of the initial view of the scene. This consideration of the origin

distance is not mathematically founded but an empirical evaluation demonstrated

that it successfully reduces the overall travel distance by penalising the selection of

view trajectories that move away from the initial view in a singular direction. These

trajectories often fail to fully observe the incomplete scene regions that surround

the surfaces observed from the initial view and therefore the sensor has to return for

measurements to be obtained, increasing the travel distance. The overall distance

is reduced by selecting a next best view, vi+1, from a subset of view proposals, W ′,

within a given radius, η, of the current view, vi = {xi,φi},

W ′ = {v = {x,φ} ∈W | ||x− xi|| < η} , (3.17)

to minimise the origin distance from the position of the first view, v0 = {x0,φ0},

vi+1 = arg min
v={x,φ}∈W ′

(||x− x0||) . (3.18)

If no view proposals exist within the specified radius of the current view (i.e.,

W ′ = ∅) then the next best view is selected to minimise the incremental distance,

vi+1 = arg min
v={x,φ}∈W

(||x− xi||) . (3.19)

The presented metric for view selection aims to select next best views that will

reduce the overall travel distance required to observe a scene. The goal for each view

is to obtain a successful observation of a target frontier point (i.e., reclassify it as a

core point). This is not always possible due to the presence of surface discontinuities

and occlusions. In these cases the view is adjusted to try and obtain a successful

observation of the scene surface beyond the discontinuity or around an occlusion.

3.2.5 View Adjustment

Most scenes contain discontinuous surface geometry and occluding surfaces. These

characteristics often constrain the improvement in a scene observation that is

achievable from a given view. Discontinuous surface geometry, such as the presence
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of edges or corners, can prevent the coverage of a scene from being extended if a view

is oriented to only observe the surface on one side of the discontinuity. An occlusion

describes the scenario in which the observation of a target surface is obscured from

a given view by the presence of another scene surface that is closer to the view.

Surfaces that are occluded or contain discontinuities that are not visible from a

given view can be successfully observed by identifying an alternative view that is

unoccluded and from which both sides of a discontinuity are visible. Strategies for

identifying a view that is likely to obtain a successful observation can be reactive

or proactive. Reactive strategies apply incremental adjustments to unsuccessful

views based on the measurements obtained until a successful observation is achieved.

Proactive strategies consider knowledge of the scene geometry obtained from previous

views to try and propose a successful view. The value of proactively handling

pointwise occlusions in an unstructured representation is investigated in Chapter 4.

In this chapter surface discontinuities and occlusions are addressed reactively.

Views that do not obtain a successful observation of their target frontier points are

incrementally adjusted until a successful observation is obtained or a termination

criterion is satisfied. The adjustment of a view is computed as a sequence of

transforms based on the distance and relative orientation of the target frontier point

from the pointwise mean for point measurements obtained from the current view

(Fig. 3.4). Incremental adjustments are applied to reduce the distance between the

frontier and pointwise mean until a successful observation is obtained or the distance

stops reducing. The adjustment then terminates and an alternative view is proposed.

The transformation of a view is performed in a coordinate frame defined by the

orthogonal set of vectors computed from the local surface geometry estimate for the

target frontier point, Rd = [en ef eb]. The magnitude of translation and rotation

for each axis is determined by the distance, s := [s0, s1, s2]T , between the pointwise

mean for the observed points, ω, and the frontier point, f , along the axis,

s = RT
d (f − ω) . (3.20)
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Figure 3.4: An illustration of a scenario where it is necessary to adjust the view of
a target frontier point in order to obtain a successful observation. The frontier point,
f , lies on one side of a surface edge (grey line) and the current view, v = {x,φ}, is
orthogonal to the surface plane on that side. A successful observation of the frontier
is not obtained from this view as the surface on the opposing side of the edge is not
visible. An adjusted view, v′ = {x′,φ′}, capable of viewing the surface beyond this
discontinuity is obtained by applying transformations in a coordinate frame defined
by the vectors en, ef and eb. The view is adjusted by rotations, Rb and Rf , and
translations, tf and tb, computed using the frontier, ef , and boundary, eb, vectors.
The adjustment magnitude is determined by a scaling factor, dt, and the distance
of the frontier point from the pointwise mean, ω, for observed points (black dots).

The translation vectors, tf and tb, along each axis have a length given by a

product of the corresponding distance, si, with a scalar, dt. The rotation matrices,

Rb and Rf , are computed using Rodrigues’ rotation formula (Rodrigues 1840).

A translation along the frontier vector is applied to move the centre of the

viewing frustum in the direction of the partially observed region of the scene,

tf = s1(dt + 1)ef . (3.21)

A rotation around the boundary vector is used to improve the visibility of a

surface on the opposing side of a discontinuity or behind an occluding surface,

Rb = I + sin θbe×
b + (1− cos θb)(e×

b )2 , (3.22)

where
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θb = tan−1

(

ds1dt

d2 + s2
1(dt + 1)

)

and u× =







0 −u2 u1

u2 0 −u0

−u1 u0 0






. (3.23)

A translation along the boundary vector moves the centre of the viewing frustum

in the direction with fewer observed points (i.e., away from the pointwise mean),

tb = s2(dt + 1)eb . (3.24)

This allows for the observation to be extended beyond multiple discontinuities in

cases where the frontier lies near the intersection of multiple surfaces (e.g., a corner).

A rotation around the frontier vector is used to move the centre of the viewing

frustum towards the point of intersection between multiple surfaces, if one exists,

Rf = I + sin θfe
×
f + (1− cos θf)(e

×
f )2 , (3.25)

where θf = tan−1

(

ds2dt

d2 + s2
2(dt + 1)

)

. (3.26)

The distance factor, dt, determines the magnitude of translation and rotation

used for the view adjustment. It is scaled exponentially with the number of

adjustments, n, for a given frontier, dt = 2n. This stops the magnitude from

converging to zero as the pointwise mean moves closer to the frontier point.

The adjusted view, v′ = {x′,φ′}, is computed from the current view position, x,

φ′ = f −Rf(tb + Rb(tf + x)) ,

x′ = f − d φ′

||φ′|| . (3.27)

This view is chosen to be the next best view instead of selecting another view

proposal and new measurements are obtained. This process is repeated iteratively

until the frontier point is successfully observed (i.e., the opposing sides of a surface

discontinuity are observed or an occlusion is avoided) or the Euclidean distance

between the frontier point and the pointwise mean for observed points stops reducing.

If this termination criterion is reached then the view proposal is switched to the

view from which the frontier point was first observed, vo, and the view adjustment
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is restarted with the distance factor reinitialised to dt = 1. If this adjustment also

reaches the termination criterion then the frontier point is reclassified as an outlier.

The presented strategy for incrementally adjusting unsuccessful views of frontier

points allows SEE to extend the observation of a scene beyond surface discontinuities

and reactively avoid occluding surfaces. This enables SEE to obtain highly complete

observations of scenes with discontinuous surface geometry and self-occlusions as

the observation of a frontier point can be attempted from multiple views, including

the view from which the frontier was first observed, until a successful observation is

obtained. The termination criterion is defined to end an attempted observation when

a frontier point is determined to be unobservable. This typically occurs when the

measurement is a product of sensor noise rather than obtained from a true surface.

3.2.6 Completion

The observation of a scene is considered complete when there are no more frontier

points remaining (i.e., all points are classified as either core points or outliers). This

means that the desired measurement density has been achieved for all scene surfaces

with core point measurements. Remaining outlier points are typically the product

of sensor noise. The extent of an observation can be constrained by discarding point

measurements outside of a user-specified bounding volume encompassing the scene.

3.3 Evaluation

SEE is compared with volumetric NBV planning approaches, (Area Factor (AF),

Vasquez-Gomez et al. 2014; Average Entropy (AE), Kriegel et al. 2015; and Rear Side

Voxel (RSV), Rear Side Entropy (RSE), Unobserved Voxel (UV), Proximity Count

(PC), Occlusion Aware (OA), Delmerico et al. 2018) on four one-metre standard

models (Newell Teapot, Newell 1975; Stanford Bunny, Turk and Levoy 1994; Stanford

Dragon, Curless and Levoy 1996; and Stanford Armadillo, Krishnamurthy and

Levoy 1996) and on a 40 metre model of the Radcliffe Camera (Boronczyk 2016).

The implementations of the volumetric approaches are provided by Delmerico et al.

(2018). Every algorithm was run to completion for 100 experiments on each model.
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Newell Teapot (1 m) Stanford Bunny (1 m) Stanford Dragon (1 m)

Figure 3.5: An experimental comparison of SEE with the evaluated volumetric
approaches. The graphs show the mean surface coverage obtained by SEE and the
volumetric approaches from 100 experiments relative to, from top to bottom, the
number of views, the mean computation time and the mean travel distance.
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Stanford Armadillo (1 m) Radcliffe Camera (40 m)

Figure 3.6: An experimental comparison of SEE with the evaluated volumetric
approaches. The graphs show the mean surface coverage obtained by SEE and the
volumetric approaches from 100 experiments relative to, from top to bottom, the
number of views, the mean computation time and the mean travel distance.
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SEE RSV RSE UV PC OA AF AE

Number of Views 60.0 105 105 105 105 105 105 105
Surface Coverage (%) 98.1 97.6 97.8 98.8 97.6 98.8 97.6 97.4
Computation Time (s) 4.13 196 200 194 198 194 196 196
Distance Travelled (m) 42.8 49.6 50.7 37.8 50.0 37.8 49.9 48.5

(a) Newell Teapot (Newell 1975)

SEE RSV RSE UV PC OA AF AE

Number of Views 75.3 129 129 129 129 129 129 129
Surface Coverage (%) 99.5 97.6 95.1 99.5 98.9 99.5 96.4 97.4
Computation Time (s) 24.7 325 324 313 320 313 326 324
Distance Travelled (m) 56.3 64.8 62.7 45.1 62.9 45.1 64.3 59.8

(b) Stanford Bunny (Turk and Levoy 1994)

SEE RSV RSE UV PC OA AF AE

Number of Views 78.0 130 130 130 130 130 130 130
Surface Coverage (%) 98.0 96.1 97.2 98.4 97.2 98.4 97.1 97.3
Computation Time (s) 15.4 311 311 300 306 300 306 311
Distance Travelled (m) 56.8 58.2 61.1 43.1 59.2 43.1 63.8 58.0

(c) Stanford Dragon (Curless and Levoy 1996)

SEE RSV RSE UV PC OA AF AE

Number of Views 63.4 127 127 127 127 127 127 127
Surface Coverage (%) 99.2 98.2 98.0 99.8 98.9 99.8 99.1 98.0
Computation Time (s) 13.7 298 301 291 298 291 298 301
Distance Travelled (m) 50.3 59.2 59.2 43.5 62.7 43.5 67.3 57.5

(d) Stanford Armadillo (Krishnamurthy and Levoy 1996)

SEE RSV RSE UV PC OA AF AE

Number of Views 64.5 130 130 130 130 130 130 130
Surface Coverage (%) 96.6 91.4 89.7 93.9 91.9 93.9 90.7 91.0
Computation Time (s) 74.4 648 630 674 622 675 628 650
Distance Travelled (m) 1302 4008 6375 1098 3272 1098 2615 1409

(e) Radcliffe Camera (Boronczyk 2016)

Table 3.1: The mean number of views captured, the mean surface coverage
obtained, the mean computation time used and the mean travel distance required to
observe four one-metre standard models (Newell Teapot, Stanford Bunny, Stanford
Dragon, and Stanford Armadillo) and a 40 metre model of the Radcliffe Camera,
calculated from 100 experiments with SEE and the volumetric approaches.
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Intel Realsense D435 Simulated LiDAR

θx (°) 69.4 60.0
θy (°) 42.5 40.0
wx (px) 848 2400
wy (px) 480 1750

Table 3.2: The field-of-view in degrees, θx and θy, and resolution in pixels, wx and
wy, of the simulated depth sensors used to obtain observations of the scene models.

3.3.1 Simulated Sensors

Point measurements from a simulated depth sensor are obtained by raycasting

into the triangulated surface mesh of a scene model and adding Gaussian noise

(µ = 0 m, σ = 0.01 m) to the ray intersections. Simulated depth sensors are defined

by a field-of-view in degrees, θx and θy, and a resolution in pixels, wx and wy.

The simulation environment contains no ground plane and the sensor can move

unconstrained in three dimensions with six degrees of freedom. The standard models

are observed using a simulated Intel Realsense D435 and the Radcliffe Camera is

observed with a simulated LiDAR sensor (Table 3.2).

3.3.2 View Constraints

View proposals for the volumetric approaches are sampled from a surface encom-

passing the scene, in this case a sphere, as presented by Vasquez-Gomez et al. (2014)

and Delmerico et al. (2018). Kriegel et al. (2015) does not sample views from an

encompassing view surface but we use the implementation provided by Delmerico

et al. (2018) which does. The radius of the view sphere is set to the sum of the

view distance, d, and a surface offset that accounts for the model size. It is equal

to the mean distance of points in the model from their centroid.

In the experiments with SEE next best views are selected until its completion

criterion is satisfied. The view limiting termination criterion used by volumetric

approaches is then set to the maximum number of views obtained by SEE in any

one experiment. The number of views sampled from the sphere encompassing the

scene is defined as 2.4 times the view limit, as presented by Delmerico et al. (2018).
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Standard Models Radcliffe Camera

ρ (points per m3) 146000 213
r (m) 0.017 0.15
η (m) 3r 3r
d (m) 1.98 41.3
γ 0.1wxwy 0.02wxwy

ǫ
√
ρ−1

√
ρ−1

Table 3.3: The parameters used by SEE and the volumetric approaches to observe
the one-metre standard models and the 40 metre model of the Radcliffe Camera.

3.3.3 Algorithm Parameters

The parameters used by SEE and the evaluated volumetric approaches to obtain

observations of the small-scale standard models and the large-scale Radcliffe Camera

model are shown in Table 3.3. The target measurement density, ρ, used by SEE

is set to be sufficiently large that frontiers in the pointcloud observation can be

reliably identified when using the chosen resolution radius, r. For the standard model

experiments the resolution radius is selected to be large enough that the simulated

sensor noise can be handled robustly while obtaining high-density observations. For

the Radcliffe Camera experiments a larger resolution radius is used to account for

the increased scene scale and the longer range at which measurements are obtained.

The volumetric approaches use the same resolutions to define the size of their voxels.

The NBV search radius used by SEE in (3.17), η, was determined experimentally.

The view distance, d, is computed from the target density and sensor parameters

using (6.1). The raycasting resolution, γ, used by the volumetric approaches

to evaluate voxel visibility is chosen to be small enough to attain a reasonable

computation time without significantly reducing the observation performance.

In all experiments, a minimum separation, ǫ, between point measurements is

enforced to maintain an upper bound on memory consumption and computational

cost. It is computed from the target density as the separation that would occur

if a number of points equal to the target density were uniformly distributed on

the surface of a unit square. New measurements are only added to the pointcloud

observation if their ǫ-radius neighbourhood contains no existing measurements.
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3.3.4 Performance Metrics

The algorithms are evaluated by calculating the relative surface coverage, computa-

tional time and sensor travel distance. These values are averaged across the 100

experiments performed on each model using each of the approaches.

The surface coverage of an approach is measured as the ratio of observed model

points, Mo, to total model points, Mt,

τ :=
Mo

Mt

. (3.28)

A point is considered observed, Mo ⊆Mt, if there is a measurement within rd of the

point. This registration distance is chosen as rd = 0.005 m for the standard models,

as in Delmerico et al. (2018), and rd = 0.05 m for the Radcliffe Camera model.

The time taken to compute next best views is measured and added to a

cumulative total. The time required to travel between views is not considered.

The distance travelled by the sensor is measured by summing the Euclidean

distance between the positions of subsequent views. This metric is used to quantify

the observation cost in lieu of measuring the operation time or energy consumption

required to move the sensor between views as these considerations are specific to a

particular platform and not applicable to a simulated free-flying sensor.

3.4 Discussion

The improvement in observation performance achievable by using an unstructured

representation that proposes and selects views based on the density of observed

points is demonstrated by the experimental results (Fig. 3.5; Fig. 3.6; Table 3.1).

SEE is shown to obtain observations for all of the models with an equivalent or

greater surface coverage than all of the evaluated volumetric approaches while using

an order of magnitude lower computational time and fewer views in the mean case.

The computation time used by SEE is significantly lower as all updates are

performed pointwise and locally while the volumetric approaches utilise raycasting

to quantify the value of every sampled view before selecting a next best view.
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Raycasting is computationally expensive as the number of evaluated voxels increases

cubically with the scene scale, when using a fixed voxel size, and linearly with the

raycasting resolution (i.e., the number of rays). The cost of this complexity when

obtaining observations of large-scale scenes using a high resolution is demonstrated

by an increase in the computational time when observing the Radcliffe Camera.

SEE is able to obtain highly complete observations using fewer views than the

volumetric approaches by directly considering scene information when proposing

views and evaluating observation completeness. Using knowledge of the scene

structure to propose views means that the visibility of scene surfaces is not restricted

by the number and distribution of a fixed set of views sampled around the scene.

Quantifying the completion of an observation means that it is only necessary to

capture a sufficient number of views to attain a given minimum measurement density.

The experimental results show that the volumetric approaches achieve high

surface coverage for the standard models by sampling a high density of views.

Similarly high coverage is not obtained when the same number of views are sampled

to observe the large-scale Radcliffe Camera. The sparser distribution of views means

that some surfaces are not visible from any sampled view and it is not possible to

achieve visibility by adjusting views. SEE is capable of attaining high coverage for

the Radcliffe Camera by proposing views to improve surface coverage and adjusting

views when measurements around a target frontier are not successfully obtained.

The sensor travel distances required to obtain scene observations using SEE

are lower than many of the volumetric approaches except for OA and UV. These

approaches are able to observe scenes by travelling shorter distances than SEE

while capturing more views as they consider occlusions. Both approaches weight

the information gain associated with observing voxels from a given view by the

probability that they are visible from the view. The probability that a target voxel is

visible is computed from the occupancy likelihood of other voxels between the target

voxel and the view. The NBV metrics used by OA and UV prioritise the selection of

views with good visibility that are close to current sensor position. This reduces the

overall travel distance as the sensor only travels farther distances when the visibility
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of nearby views is occluded. The demonstrated value of considering occlusions

before capturing views motivates the work on proactive occlusion handling with an

unstructured scene representation that is presented in the proceeding chapter.

This chapter demonstrates the value of using an unstructured scene representa-

tion for NBV planning. The use of high-fidelity pointwise scene information makes it

possible to propose views that can improve an observation by considering the scene

structure. These views can be reactively adjusted in response to new measurements

until a successful improvement in the scene observation is obtained. Next best views

are selected and captured until a given measurement density is attained for all

scene surfaces. Experimental results demonstrate that the resulting SEE approach

is able to obtain highly complete scene observations using fewer views and a lower

computational time than the evaluated state-of-art volumetric approaches.

This work provides the foundation for investigations into proactive occlusion

handling (Ch. 4) and considering scene visibility (Ch. 5) with an unstructured scene

representation. Solutions to these challenges have been presented for structured

representations but it was necessary to formulate novel techniques suitable for an

unstructured representation. The investigations aim to increase the observation

performance of SEE by improving the visibility of scene surfaces in order to reduce

the number of views and travel distance required to obtain scene observations.

In summary, the work presented in this chapter makes five key contributions:

1. A novel unstructured scene representation based on measurement density.

2. A method for proposing views directly from point-based scene information.

3. A novel technique for reactively handling occlusions that is capable of suc-

cessfully observing target surfaces by using incrementally adjusted views.

4. A termination criterion that considers observation completeness by ensuring

that a minimum measurement density is obtained for all observable surfaces.

5. Experimental results demonstrating that SEE is capable of obtaining scene

observations with similar or better coverage than state-of-the-art volumetric

approaches using fewer views and a significantly lower computation time.
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This chapter presents an investigation of strategies for proactively handling

occlusions with an unstructured scene representation. It is often necessary for NBV

planning approaches to consider occlusions in order to obtain the most complete

observation of a scene possible given sensing and termination constraints. A scene

observation can be considered complete if the sensor measurements obtained cover

every surface in the scene. This is only possible if every scene surface is visible from at

least one of the views obtained. Occlusions can prevent the observation of a surface

from certain views and potentially render a complete scene observation unobtainable.

70
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A target surface is occluded from a given view if another surface exists within

the view frustum of the sensor between the target surface and the view position. An

occluding surface can be part of the scene (i.e., a self-occlusion) or another object

within the sensor workspace. In order to successfully observe the target surface a view

must be found that does not have an occluding surface within its frustum. Occlusions

can be addressed reactively by capturing incrementally adjusted views until the

target surface is observed or handled proactively by detecting known occlusions

before a view is obtained and proposing an alternative view that is unoccluded.

SEE addresses occlusions reactively (Sec. 3.2.5). When a frontier point is not

successfully observed from its associated view, the view is incrementally adjusted and

new measurements are obtained until it is observed or determined to be unobservable.

Unoccluded views can be found using this strategy but it is inefficient in terms of

the distance travelled and number of views required to observe a frontier.

The work on proactive occlusion handling presented in this chapter aims to obtain

unoccluded views more efficiently. Point-based occlusions are detected before views

are obtained (Sec. 4.2) and encoded in a novel pointwise representation (Sec. 4.3.1).

Several strategies for proposing unoccluded views using the information encoded

in this representation are investigated (Sec. 4.3). The observation performance of

these strategies is evaluated experimentally in comparison with SEE (Sec. 4.4).

The work presented in this chapter makes three key contributions:

1. A computationally efficient method for detecting point-based occlusions.

2. A novel representation for encoding pointwise occlusion information.

3. An investigation of several strategies for proposing unoccluded views.

4.1 Existing Methods

Existing methods for detecting occlusions almost exclusively use raycasting. This

technique computes the intersection of a ray, defined by an origin and direction, with

any two-dimensional (e.g., a plane) or three-dimensional (e.g., a cube) manifolds

that collide with the ray in real space. Volumetric approaches use raycasting

to detect collisions between a set of rays, with origins at the view position and
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directions within the view frustum, and voxels in their grid representation. Surface

approaches use raycasting to detect collisions between a set of rays and triangles in

their mesh representation. The visibility of a represented manifold (e.g., a voxel

or surface triangle) from a given view is considered fully occluded if every ray

intersecting it collides with another manifold first or partially occluded if some of

the intersecting rays have no previous collisions. A represented manifold is fully

visible if none of its intersecting rays have previous collisions.

The unstructured density representation used in SEE only contains observed

points (i.e., zero-dimensional manifolds) with which ray intersections can not be

computed. In order to use raycasting with this representation it would be necessary

to manifest the points as three-dimensional spheres by augmenting the point

representation with a radius parameter. This would require a heuristic determination

of the radius parameter that may not generalise between scenes. Too large a value

would result in false positive detections and too small a radius could produce false

negatives. It could also be computationally expensive as in the worst case a naive

raycasting method may evaluate the intersection of m rays with n augmented points

for a complexity of O(mn). Raycasting is therefore not a suitable method for

detecting point-based occlusions with an unstructured scene representation.

Katz et al. (2007) present Hidden Point Removal (HPR), an approach for

determining the visibility of points from a given view. HPR can identify the set of

points in a pointcloud that are visible from a specified view. Points are projected

using the spherical flipping technique presented by Katz et al. (2005). The projection

of each point is computed relative to the surface of a sphere centred on the view

position and with a sufficiently large radius to encompass the pointcloud. The

spherical flipping preserves the orientation of projected points relative to the view

and determines their position as a ratio of the distance from the view to the original

point and the sphere radius. The projection function is monotonically decreasing

such that points closer to the view are projected farther from the sphere. A convex

hull is computed from the set of projected points and the view position. Points

whose projections are in the convex hull are determined to be visible from the view.
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HPR does provide a solution for detecting point-based occlusions. It requires

no heuristic augmentation of the pointwise representation and has a computational

complexity of O(n log n) (Katz et al. 2007). This would provide greater efficiency

than using a naive raycasting method if the number of observed points, n, is not

logarithmically greater than the number of rays. If the objective was to identify the

set of all points that are visible from a given view then HPR would be the ideal

solution. However, in this scenario it is only necessary to consider a single point so

assessing the visibility of other points introduces unnecessary complexity. HPR is

therefore not considered to be an ideal solution for detecting point-based occlusions.

Most existing NBV planning approaches do not proactively handle occlusions

by proposing unoccluded views based on existing scene information. Approaches

that sample a fixed set of views from a surface encompassing the scene usually

perform an exhaustive search to determine the visibility of every manifold in the

scene representation from each view. This method is computationally expensive

and will not obtain an unoccluded view if one does not exist in the fixed view set.

Approaches that consider visibility when sampling views from the scene volume

using path planning techniques typically either sample views in free space until a

given visibility criterion is satisfied (Song and Jo 2017) or sample them from a region

with known visibility (Song and Jo 2018). Approaches that propose views based on

scene observations often apply reactive strategies (Kriegel et al. 2015), similar to the

one used by SEE, that incrementally adjust views until a successful observation is

obtained or the adjustment exceeds a given threshold. As discussed previously this is

an inefficient strategy as the incremental views obtained typically do not significantly

improve the scene observation relative to the travel distance and time required.

Given that existing solutions for considering occlusions are not suitable for use

with an unstructured scene representation it was necessary to investigate novel

point-based strategies for detecting occlusions and proposing unoccluded views. To

the best of my knowledge this is the first work to present solutions for proactively

handling occlusions with an unstructured density representation. It is unique in its

direct consideration of occlusions when proposing views using scene information.
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Figure 4.1: An illustration of how the visibility of a frontier point (black dot), f ,
from its associated view, v = {x,φ}, can be evaluated exactly. The distance of
every observed point (grey dots), p ∈ P , to the sight line from the frontier point to
the view, w, is computed from its position relative to the frontier, j, and the view,
i. Points within an r-radius of the sight line are occluding points (grey circles).

4.2 Detecting Occlusions

Point-based occlusions are detected by identifying occluding points between a

target frontier point and a given view. This section presents an exact method for

determining the visibility of a frontier point from a given view (Sec. 4.2.1) and an

approximate method using a naive (Sec. 4.2.2) and adaptive search (Sec. 4.2.2).

4.2.1 Defining Visibility

The presence of points within an r-radius of the sight line between a view and its

frontier point represents a potential occlusion. This occluding surface can prevent

the surfaces around a frontier point from being successfully observed (Fig. 4.1).

The visibility of a frontier point, f , from its associated view, v = {x,φ}, can be

defined by the existence of occluding points, D, within an r-radius of the sight line,

D(f ,v) :=

{
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∣

≤ r ∧ w · i < 0 ∧ w · j < 0

}

, (4.1)

where a · b denotes the dot product of two vectors, P is the set of all observed

points, w = x − f is the sight line, i = p − x is a vector from the view position

to a point and j = f − p is a vector from a point to the frontier. The constraints

w · i < 0 and w · j < 0 ensure that only points between the view position and

frontier are considered. An empty set of occluding points, D ≡ ∅, denotes that the

frontier point is visible from the view and it is otherwise occluded.
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Figure 4.2: An illustration of how frontier visibility is determined using the naive
search-based approximation. Occluding points (grey circles) are identified within
the r-radii of search points (black circles), qk ∈ Q, sampled along the sight line from
the frontier point (black dot), f , to the view, v = {x,φ}, up to a given distance, ψ.

4.2.2 Naive Search

As the number of point measurements increases, evaluating whether every observed

point is within an r-radius of the sight line between a frontier point and its associated

view becomes computationally expensive. This complexity is reduced by using a

naive search-based approximation (Fig. 4.2) to identify occluding points within the

r-radii of a set of points, Q, sampled at an r-interval along the sight line,

Q :=

{

f + kr
w

||w||

∣

∣

∣

∣

∣

k = 1, 2, . . . ,
ψ

r

}

, (4.2)

starting at an offset from the frontier and up to a given occlusion search distance, ψ.

The first point is sampled with an offset of k = 1 from the frontier point to

ensure that points on the same surface and behind the frontier are not identified as

occlusions. This assumes that the sight line is orthogonal to the local surface.

The last point is sampled before a specified occlusion search distance is exceeded.

In an ideal scenario this is equal to the view distance, ψ = d, but it is provided as a

user-defined parameter so the computational cost of handling occlusions, includ-

ing proposing unoccluded views, can be managed for computationally expensive

observations (e.g., when observing large-scale scenes with long range sensors).

Occluding points are identified within the r-radius of each sampled point, q ∈ Q,

N(P, r,q) := {p ∈ P | ||p− q|| ≤ r} , (4.3)
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such that set of occluding points between the frontier point and view is the union

of the sets of neighbouring points within the r-radius of each sampled point,

D′(f ,v) :=
⋃

q∈Q

N(P, r,q) . (4.4)

An empty set of occluding points, D′ ≡ ∅, denotes that the frontier point is visible

from the view and is otherwise occluded, as specified in the visibility definition.

4.2.3 Adaptive Search

The naive search method relies on an assumption that the sight line between a

frontier point and its view is orthogonal to the local surface when defining an offset

for sampling the first search point. This is an invalid assumption in many cases,

particularly when assessing the visibility of a frontier point from a different view than

the one originally proposed to observe it (i.e., the view obtained using an estimate

of the local surface geometry). A better solution is to compute a variable offset, ζ,

for each frontier point from existing visibility information (Fig. 4.3). The adaptive

occlusion search replaces the fixed starting point (4.2) with this variable offset,

Q′ :=

{

f + kr
w

||w||

∣

∣

∣

∣

∣

k = ζ, ζ + 1, . . . ,
ψ

r

}

. (4.5)

A suitable offset is determined by finding the first sampled point, qk ∈ Qo, along

the sight line between a frontier point and its observing view (i.e., the view from

which the point was initially observed), vo, with no occluding points, N(P, r,qk) ≡ ∅,

and using that offset, ζ = k. This leverages the knowledge that as the point was

originally observed from this view it is guaranteed to have been visible, provided the

sensor measurement was obtained from a real surface (i.e., it is not the product of

sensor noise), and so the presence of any potential occlusions closer than the offset

did not prevent visibility of the surface. The assumption is made that this distance

within which neighbouring points are not occluding also applies to other views.
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Figure 4.3: An illustration of a motivating scenario for using an adaptive offset,
ζ, with the occlusion search and how a suitable offset is found. This shows that a
frontier point (black dot) can be obtained from a surface despite the presence of a
potentially occluding point (grey circle) within the first search radius. A suitable
offset is determined by searching the sight line from the frontier to its observing
view, vo = {xo,φo}, and choosing the first sampled point for which no occlusions
are found (black circle), qζ .

4.3 Proposing Unoccluded Views

When the visibility of a frontier point from its associated view is determined to

be occluded it is necessary to find an unoccluded view from which a successful

observation can be obtained. This can be achieved by identifying the directions from

which a view of the frontier would be occluded and using known visibility information

(e.g., the observing view) to estimate the direction of an unoccluded view. The

observing view is not chosen even though it is unoccluded as capturing multiple

measurements from the same view does not typically improve a scene observation.

This section presents a spherical projection for representing the directions

from which occluding points would prevent the observation of a frontier. Different

strategies are investigated that aim to use this representation and the observing view

orientation, φo, to propose an unoccluded view orientation, φ′, with a corresponding

view position at the view distance from the frontier point, x′ = f − dφ′.
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Figure 4.4: A cross-sectional illustration of the spherical projection used to
represent sight lines along which the observation of a frontier point (black dot), f , will
be occluded. Points (grey dots) within the occlusion search distance of the frontier
are projected (grey circles) onto a unit sphere centred on the frontier point based on
their relative orientation to the sphere centre. Strategies for proposing unoccluded
views aim to use the occlusion information encoded in this representation and the
known visibility of the observing view orientation, φo, to propose an unoccluded
view orientation, e.g., φ′, from which the frontier point can be successfully observed.

4.3.1 Representing Occlusions

The visibility of a frontier point from a view is considered to be occluded if observed

points exist within a given distance of the sight line from the frontier point to the

view (Sec. 4.2.1). The relative positions of observed points within a given distance of

the frontier therefore denote sight lines along which a view at the specified distance

or greater would be occluded. The orientation of these occlusions relative to the

frontier point can be transformed into standardised representation by projecting

points within the occlusion search distance, ψ, of the frontier, f , onto a unit sphere

with a centre equal to the frontier point (Fig. 4.4),

S =

{

p− f

||p− f ||

∣

∣

∣

∣

∣

p ∈ N(P, ψ, f)

}

. (4.6)

This representation is inspired by the spherical flipping technique used in HPR.

The successful identification of occluded sight lines using this spherical projection

is dependent on the measurement accuracy of occluding points. Noisy sensor

measurements obtained from surfaces close to the frontier point often deviate from

the underlying surface and their projections can produce false occlusions. This
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effect is mitigated by offsetting the projection centre, c, of the unit sphere from the

frontier point along the sight line to its observing view, wo, which is known to be

unoccluded, using the offset computed by the adaptive occlusion search (Sec. 4.2.3),

c = f + ζr
wo

||wo||
. (4.7)

The projection of occluding points is then computed relative to this offset centre,

S ′ =

{

p− c

||p− c||

∣

∣

∣

∣

∣

p ∈ N(P, ψ, f)

}

. (4.8)

The following subsections present strategies that aim to use the occlusion

information encoded in this representation and existing visibility knowledge for the

frontier (i.e., its observing view) to estimate the orientation of an unoccluded view.

4.3.2 Mean Strategy

A simple strategy for estimating the orientation of an unoccluded view is to consider

a sight line from the pointwise mean of the projected points that intersects the centre

of the spherical projection. The position of this pointwise mean within the sphere

relative to the centre indicates the direction of a region on the sphere containing the

greatest number of projected points. A sight line from this position that intersects

the sphere centre will therefore point away from the occupied region of the sphere

and for simple occlusion configurations will intersect the sphere in a region of free

space. A view along this sight line has orientation equal to the pointwise mean,

φ′ = s̄ =
1

|S ′|
∑

s ∈ S′

s . (4.9)

This strategy can successfully obtain an unoccluded view for simple occlusion

configurations but relies on an assumption that the projected points have an

approximately uniform distribution over a contiguous region of the sphere. When

the density of points in one region of the sphere is significantly greater than elsewhere

the pointwise mean will be biased towards this region and the sight line from its

position through the sphere centre may intersect an occupied region with fewer

projected points (Fig. 4.5). If there exist discontiguous sets of projected points on

opposing regions of the sphere then the pointwise mean will lie on the axis between

the two regions and the sight line will intersect the region with fewer projected points.
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(a) Success Case (b) Failure Case

Figure 4.5: These visualisations show scenarios in which the mean strategy is (a)
successful and (b) unsuccessful at identifying a sight line free from occlusions by
using the spherical representation of occluding points (Sec. 4.3.1). The tiny black
dots on the sphere surfaces represent the projections of virtual occluding points
(not shown) that would obscure the visibility of a frontier point placed at the sphere
center (i.e., they are equivalent to the grey circles shown in Fig. 4.4). The triangular
regions containing no projected points represent space that is free from occlusions.
The large blue dots denote the sight line of an observing view from which the frontier
point at the sphere center would have been initially observed. This sight line is
known to be unoccluded and is used by some strategies to inform the direction of a
proposed view (e.g., by the eigenvector strategy) or as an initial solution for view
proposals (e.g., by the geodesic and optimisation strategies). The large red dots
represent the sight lines proposed by the mean strategy. In (a) the distribution
of projected points is approximately uniform and the mean strategy successfully
proposes an unoccluded view. In (b) this uniform distribution is augmented by
adding additional points to the righthand side of the sphere. This biases the mean
of the projected points and the mean strategy fails to propose an unoccluded view.

4.3.3 Eigenvector Strategy

The failure cases of the mean strategy can be partially mitigated by accounting for

the variation in a set of projected points using Principal Component Analysis (PCA)

(Pearson 1901; Hotelling 1933). PCA obtains a set of orthogonal basis vectors that

represent the principal axes which account for the greatest amount of variance in a set

of data. The axis associated with the least variation in the distribution of projected

points is most likely to intersect a region of free space on the spherical projection.

No direction is explicitly associated with this axis and therefore the computed view

orientation is chosen to lie in the same hemisphere as the observing view.
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(a) Success Case (b) Failure Case

Figure 4.6: An experimental comparison of the sight lines proposed using the
eigenvector strategy (orange dots) for different sized regions of free space on the
spherical projection. Projected points are uniformly sampled over the occupied
region of each sphere and then augmented with additional points sampled on the
righthand side, as in Figure 4.5b. In (a) the eigenvector strategy successfully obtains
an unoccluded view in a large region of free space when the mean strategy (red
dots) fails as it is more robust to the nonuniform point distribution. In (b) the
strategy fails for a smaller region of free space as the magnitude of bias on the axis
of least variance for the projected points increases. The proposed view is set to
point in the same direction as the observing view (blue dots) such that φ′ · φo ≥ 0.

The set of orthogonal basis vectors is obtained by performing an eigenvalue

decomposition on a matrix representation of the projected points, si ∈ S ′,

D := [s1 − s̄, ..., sn − s̄] ∈ R
3×|S′| . (4.10)

The decomposition of the covariance matrix, A := DDT, produces eigenvalues,

Λ = {λ1, λ2, λ3} and eigenvectors, Υ = {υ1,υ2,υ3}, which satisfy the eigenequation,

Aυi = λiυi , i = {1, 2, 3} . (4.11)

The view orientation is assigned as the eigenvector corresponding to the minimum

eigenvalue (i.e., the axis associated with the least variation in the projected points),

φ′ = {υi | λi = min {Λ}} , (4.12)

and points in the same direction as the observing view (i.e., φ′ · φo ≥ 0).

This strategy is more likely to obtain an unoccluded view for occlusion configu-

rations with a nonuniform distribution of projected points than the mean strategy
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provided there exists a sufficiently large region of free space on the spherical

projection (Fig. 4.6). Accounting for the variance of projected points rather than

just the pointwise mean allows an unoccluded view to be obtained for occlusion

configurations with discontiguous sets of opposing points. The robustness of this

strategy to nonuniform point distributions is limited as the covariance matrix used

for the eigenvalue decomposition depends on the mean of the projected points.

4.3.4 Geodesic Strategy

An unoccluded view orientation can be obtained with greater success if the distri-

bution of projected points is evaluated on the Riemannian manifold of the sphere

instead of in Cartesian space. On this manifold the directions of greatest variation

in a set of projected points can be represented with an orthogonal set of principal

circles on the sphere. If a circle is geodesic (i.e., it denotes the shortest path between

two points) then it defines a great circle and otherwise represents a small circle.

The set of principal geodesics that best represent the variance of points on a

sphere can be obtained using the Principal Geodesic Analysis (PGA) approach

presented by Fletcher et al. (2004), an adaption of the PCA technique for Riemannian

manifolds. PGA is generalised by Jung et al. (2012) to Principal Nested Spheres

(PNS), which obtains a set of principal circles that are not required to be geodesic.

The geodesic strategy applies a subset of PNS, Principal Nested Great Spheres

(PNGS), which uses the same method as PNS but only considers great circles.

The geodesic path along which there is the greatest variation in projected points

is found by computing the closest possible great circle to the set of points. This

path is the first principal circle computed using PNGS. The distance of projected

points from a potential solution (i.e., a great circle) is computed and minimised in

a tangent space of the sphere. The point of tangency defining this space is given by

the intersection of the great circle axis with the sphere. As this axis is orthogonal to

the geodesic path representing the greatest variance in projected points it denotes

a vector along which there is minimal variation in the set of projected points. This

therefore provides a good estimate for the orientation of an unoccluded view.
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The axis of a great circle is represented by a vector pointing from the sphere

centre along the axis. The point at which this vector intersects the sphere, y, is used

as a point of tangency to define a tangent space for the sphere. Projected points,

s = [s1 , s2 , s3] ∈ S ′, are mapped into this tangent space by a logarithmic function,

Logy(s) =

[

s1 ·
arccos(s3)

sin(arccos(s3))
, s2 ·

arccos(s3)

sin(arccos(s3))

]

. (4.13)

The initial point of tangency is given by the intersection of the sight line for the

observing view with the sphere. This is equivalent to the reverse of the observing

view orientation as it is a unit vector, y = −φo.

Points in a tangent space of the sphere, t = [t1 , t2], can be mapped back onto

the sphere using an exponential function,

Expy(t) =

[

t1 ·
sin ||t||
||t|| , t2 ·

sin ||t||
||t|| , cos ||t||

]

. (4.14)

A solution point in the tangent space, t⋆, that is the shortest distance from the

set of projected points is found by solving a least-squares minimisation problem

(e.g., using the Levenberg-Marquardt algorithm; Levenberg 1943; Marquardt 1963),

t⋆ = arg min
t ∈R2

∑

s ∈ S′

(

||Logy(s)− t|| − π

2

)2

, (4.15)

where the computed principal circle is constrained to be geodesic by requiring its

radius to be π
2

and the initial solution point in the tangent space is t = [0 , 0].

The point of tangency is updated with the solution point on the sphere, y←
Expy(t⋆), and another iteration of the least-squares minimisation is performed.

This continues until the solution point has converged to within a specified tolerance.

The solution point on the sphere defines the axis of the first principal circle along

which the distance of projected points from the corresponding great circle has been

minimised. Its position indicates the mostly likely direction of an unoccluded sight

line from the frontier point as the initial solution point on the sphere is given by the

known unoccluded sight line of its observing view. The proposed view orientation is

therefore equal to the antipole of the solution point on the sphere, φ′ = −Expy(t⋆).

This strategy is capable of proposing unoccluded views with greater reliability

and for more complex occlusion configurations than the mean and eigenvector
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(a) Success Case (b) Failure Case

Figure 4.7: An experimental comparison of the sight lines proposed using the
geodesic strategy (yellow dots) for different sized regions of free space on the
spherical projection. Projected points are sampled on the sphere as in Figure 4.6.
In (a), the geodesic strategy successfully obtains an unoccluded view in a region of
free space when the eigenvector strategy (orange dots) fails as the biasing effect of
the nonuniform distribution is reduced when considering variance on the sphere.
In (b), this strategy fails when the region of free space is reduced as the biasing
effect of the nonuniform distribution on the least-squares convergence increases.
The initial solution point on the sphere is defined by the observing view (blue dots).

strategies. Accounting for the distribution of projected points on the Riemannian

manifold of the sphere rather than in Cartesian space makes the estimate of an

unoccluded view orientation more robust to a nonuniform distribution of projected

points (Fig. 4.7). This approach is not capable of proposing an unoccluded view

orientation for all occlusion configurations. For example, a nonuniform point

distribution can produce an occluded view orientation by biasing the convergence of

the least-squares minimisation to a solution point in an occupied region of the sphere.

4.3.5 Optimisation Strategy

Distribution-based strategies for proposing an unoccluded view (i.e., the mean,

eigenvector and geodesic strategies) evaluate the occupied region of the spherical

projection, by accounting for the distribution of projected points, to estimate a view

orientation that will intersect a region of free space. An alternative approach to

this problem is to directly identify the boundary between occupied and unoccupied

regions of the sphere. An unoccluded view orientation can then be proposed to
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intersect the centre of the unoccupied region. This view will have the greatest

angular separation from nearby occlusions and therefore the best visibility of the

target frontier point. The challenge of identifying this boundary between unoccupied

and occupied regions of the sphere can be formulated as an optimisation problem.

The maximin facility location problem on a sphere, referred to in this thesis

as the maximin optimisation problem, aims to find the location on a sphere that

maximises the minimum distance to a set of points. There exists a complementary

problem, the minimax facility location problem, which aims to find the location

on a sphere that minimises the maximum distance to a set of points.

Drezner and Wesolowsky (1983)1 present approaches for finding locally and

globally optimal solutions to the minimax optimisation problem on a sphere and

prove that the antipole of a minimax point is a solution to the complementary max-

imin optimisation. A locally optimal minimax solution is computed with a steepest

descent algorithm. A global minimax solution is found by iteratively obtaining local

solutions and checking their global optimality. This approach is not formulated

to be solvable using standard nonlinear optimisation techniques and therefore the

problem was investigated further to identify a nonlinear optimisation solution.

Patel and Chidambaram (2002) present a solution to the minimax problem

formulated as a nonlinear optimisation with a linear objective function constrained

by quadratic and linear constraints that can be solved using standard optimisation

algorithms (e.g., Sequential Least-Squares Quadratic Programming (SLSQP); Kraft

1988; Kraft 1994). This approach obtains a minimax solution by finding the

smallest spherical cap that encompasses every point on the sphere. Different

methods are presented for handling hemispherical and spherical point distributions.

The optimisation for hemispherical distributions is a convex problem for which a

globally optimal solution is obtained. The optimisation for spherical distributions

is nonconvex so a computed solution is not guaranteed to be globally optimal.

This thesis uses the approach presented by Patel and Chidambaram (2002) to find

the view orientation which maximises the minimum distance to the set of projected

1Drezner and Wesolowsky (1983) suggest an application for the maximin problem is finding
the “location of a facility as far as possible from a given set of missile bases”.
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points. A solution to the minimax problem is computed for which the corresponding

maximin solution is the antipole, as shown by Drezner and Wesolowsky (1983).

The minimax solution is the centre of the smallest spherical cap that can contain

all of the projected points. This cap is defined by a plane intersecting the sphere.

The solution is found by optimising the orientation of the plane normal, n, and its

distance from the centre of the sphere, e. The plane normal points towards the

smaller of the two spherical caps defined by the plane intersection. It is initialised

using the orientation of the view from which the frontier point was first observed,

φo, as this sight line is known to be unoccluded.

The specific optimisation method depends on the distribution of the projected

points. If they are spread over the full sphere then the smallest containing cap

will be larger than a hemisphere and is found by minimising the distance of the

plane from the sphere centre,

(n⋆, e⋆) := arg min
n ∈R

3, e ∈ [0,1]

e

subject to e ≤ nT n ,

e ≥ nT si , i = 1, . . . , |S ′| ,

(4.16)

where si ∈ S ′ is a projected point on the sphere. The initial distance is one and

the initial normal is the inverse of the observing view orientation, n = −φo. The

minimax solution, s′, is the intersection of the inverse normal with the sphere,

s′ = − n⋆

√
e⋆
, (4.17)

as the normal points away from the containing cap.

If the projected points lie on a hemisphere then the full sphere optimisation

converges to a plane bisecting the sphere (i.e., e⋆ = 0). This indicates the smallest

containing cap must be smaller than a hemisphere. It can then be found by

maximising the distance of the plane from the sphere centre,

(n⋆, e⋆) := arg max
n ∈R

3, e ∈ [0,1]

e

subject to e ≥ nT n ,

e ≤ nT si , i = 1, . . . , |S ′| ,

(4.18)
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where the initial distance is zero and the initial normal is the observing view

orientation, n = φo. The minimax solution is the intersection of the plane

normal with the sphere,

s′ =
n⋆

√
e⋆
, (4.19)

as the normal points towards the containing cap.

The maximin solution is the antipole of the minimax solution. It represents the

direction of an unoccluded sight line starting at the frontier point and pointing

towards free space. This means the orientation of the view proposed to observe

the frontier along this line is equal to the minimax solution, φ′ = s′.

This strategy aims to identify a unoccupied region of the sphere by finding the

smallest spherical cap which encompasses all of the projected points, such that the

opposing cap will be a region of free space. A view is proposed to intersect the centre

of the unoccupied cap as this will provide the greatest angular separation from

occlusions. When the projected points lie on a hemisphere the optimisation problem

is convex and a globally optimal solution can be guaranteed (i.e., the proposed view

will be unoccluded and have the greatest possible separation from known occlusions).

If projected points are distributed over the full sphere then the problem is

nonconvex and a globally optimal solution is not guaranteed. The solution may

converge to a local minima on an occupied region of the sphere resulting from a

nonuniform point distribution and produce an occluded view (Fig. 4.8). These

failures are nullified by defining the initial solution as the sight line of the observing

view, which is known to be unoccluded. Ensuring that the initial solution lies in

free space guarantees that the optimisation will converge to a local minima within

the same unoccupied region and produce an unoccluded view proposal (Fig. 4.9).

The guarantee that the sight line of the proposed view will be free from known

occlusions is a significant improvement on distribution-based strategies which depend

on evaluating the distribution of projected points to estimate a view orientation but

provide no guarantee that it will be unoccluded. However, proposing an unoccluded

view does not guarantee the successful observation of a frontier point as this can

still be prevented by unknown occlusions or sensor noise.
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(a) Success Case (b) Failure Case

Figure 4.8: Experimental results demonstrating that the optimisation strategy
(green dots) is not guaranteed to obtain an unoccluded view proposal if the initial
solution, in this case an erroneous observing view (blue dots), does not lie in a
region of free space on the sphere. (a) shows that an unoccluded view can sometimes
be obtained but this is not guaranteed as the optimisation may converge to a local
minima that is produced by a nonuniform distribution of points, as shown in (b).

(a) Success Case (b) Success Case

Figure 4.9: Experimental results demonstrating that the optimisation strategy
(green dots) can obtain an unoccluded view proposal within small regions of free
space on the sphere even for nonuniform distributions of projected points (a, b).
This strategy is capable of proposing unoccluded views for occlusion configurations
on which the other strategies fail as it directly identifies regions of free space on the
sphere rather than evaluating the distribution of projected points. It is guaranteed
to obtain a view free from known occlusions if the initial solution lies in free space
(e.g., the observing view) but not for initial solutions in occupied regions (Fig. 4.8).
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4.4 Evaluation

The presented strategies for proposing unoccluded views are evaluated by integrating

them with SEE. Occlusion detection is performed using the adaptive search method

(Sec. 4.2.3) for a given number of view proposals, τ , closest to the current sensor

position. This is referred to as the view update limit. A new view is proposed

using one of the strategies for any frontier point whose visibility from their current

view proposal is found to be occluded. If the frontier point can not be successfully

observed from this view (i.e., it is not reclassified as a core point) then the view

is incrementally adjusted using the method from SEE (Sec. 3.2.5).

The performance of these strategies is compared with SEE by using the simulation

environment discussed in Section 3.3. 100 experiments were performed on each of

the standard models and the Radcliffe Camera model using the same simulated

sensors (Table 3.2), algorithm parameters (Table 3.3) and performance metrics

(Sec. 3.3.4). A view update limit of τ = 100 views is used to detect occlusions

within an occlusion search distance of ψ = 1 m for the standard models and

ψ = 40 m for the Radcliffe Camera.

4.5 Discussion

The improvements in observation efficiency achievable by proactively handling

occlusions before obtaining views are demonstrated by the experimental results

(Fig. 4.10; Fig. 4.11; Table 4.1). All of the presented strategies for considering

occlusion are able to obtain scene observations with an equivalent surface coverage

to SEE using fewer views and shorter travel distances, except for the geodesic strategy

on the Radcliffe Camera which travels a greater distance. The cost of this improved

efficiency is typically an increase in computational time but this can be a valuable

trade-off when it is necessary to account for the movement cost of a sensor platform.

Observation cost is typically reduced by requiring fewer views and shorter travel

distances to observe a scene. Requiring fewer views means that less computational

power is expended processing new measurements and shorter travel distances limit
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Newell Teapot (1 m) Stanford Bunny (1 m) Stanford Dragon (1 m)

Figure 4.10: An experimental comparison of SEE with the presented occlusion
strategies. The graphs show the mean surface coverage obtained by SEE and the
presented strategies from 100 experiments relative to, from top to bottom, the
number of views, the mean computation time and the mean travel distance.
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Stanford Armadillo (1 m) Radcliffe Camera (40 m)

Figure 4.11: An experimental comparison of SEE with the presented occlusion
strategies. The graphs show the mean surface coverage obtained by SEE and the
presented strategies from 100 experiments relative to, from top to bottom, the
number of views, the mean computation time and the mean travel distance.
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SEE Mean Eigenvector Geodesic Optimisation

Number of Views 56.9 28.3 35.8 49.5 31.9
Surface Coverage (%) 98.1 97.8 98.1 98.0 97.9
Computation Time (s) 9.91 4.94 8.24 16.1 35.0
Distance Travelled (m) 41.4 30.4 32.6 38.6 28.1

(a) Newell Teapot (Newell 1975)

SEE Mean Eigenvector Geodesic Optimisation

Number of Views 73.7 48.1 60.6 68.4 67.6
Surface Coverage (%) 99.5 99.7 99.7 99.4 99.5
Computation Time (s) 23.9 18.5 38.6 64.7 125
Distance Travelled (m) 55.7 43.8 48.5 53.0 36.1

(b) Stanford Bunny (Turk and Levoy 1994)

SEE Mean Eigenvector Geodesic Optimisation

Number of Views 79.2 62.7 57.5 72.2 73.1
Surface Coverage (%) 98.0 98.1 98.0 97.7 97.6
Computation Time (s) 15.6 16.7 22.0 37.1 82.0
Distance Travelled (m) 58.3 47.1 44.6 54.3 38.5

(c) Stanford Dragon (Curless and Levoy 1996)

SEE Mean Eigenvector Geodesic Optimisation

Number of Views 65.3 42.6 52.3 58.3 60.1
Surface Coverage (%) 99.3 99.4 99.3 99.1 98.7
Computation Time (s) 14.3 10.8 19.7 30.7 67.2
Distance Travelled (m) 50.3 42.2 41.3 46.4 35.0

(d) Stanford Armadillo (Krishnamurthy and Levoy 1996)

SEE Mean Eigenvector Geodesic Optimisation

Number of Views 63.5 41.1 43.2 61.1 62.7
Surface Coverage (%) 96.4 96.4 96.2 96.4 95.5
Computation Time (s) 75.5 63.2 100 184 232
Distance Travelled (m) 1280 965 1161 1425 917

(e) Radcliffe Camera (Boronczyk 2016)

Table 4.1: The mean number of views captured, the mean surface coverage
obtained, the mean computation time used and the mean travel distance required to
observe four one-metre standard models (Newell Teapot, Stanford Bunny, Stanford
Dragon, and Stanford Armadillo) and a 40 metre model of the Radcliffe Camera,
calculated from 100 experiments with SEE and the presented occlusion strategies.
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the energy consumed moving a sensor platform between views. The experimental

results show that the greatest reductions in required views and travel distance are not

achieved by the same presented strategies. The mean strategy obtains observations

using the fewest views for all of the evaluated scenes except for the Stanford Dragon,

on which the eigenvector strategy achieves the best view performance, but with

greater travel distances than the optimisation strategy. The eigenvector strategy

typically requires slightly more views than the mean strategy but uses a similar travel

distance, except for on the Radcliffe Camera where it travels significantly farther.

The geodesic strategy does not achieve a significant improvement over SEE in

terms of required views or travel distance but still incurs an increased computational

cost. The optimisation strategy consistently obtains scene observations using the

shortest travel distances but does not significantly reduce the number of views re-

quired, except for on the Newell Teapot, and incurs an increased computational cost.

In some cases the present strategies are able to achieve lower overall computation

times than SEE by achieving a sufficiently significant reduction in the number of

required views to mitigate the increased computational cost per view. The mean

strategy is able to observe all of the scenes except for the Stanford Dragon using a

lower mean computation time than SEE as it obtains observations using fewer views

and only incurs a marginally greater computational cost per view. The eigenvector

strategy observed the Newell Teapot using a lower computation time than SEE as it

required 37% fewer views and did not incur a significant increase in the computational

cost per view. Both the geodesic and optimisation strategies required greater

computation times than SEE for all of the scenes as they did not obtain observations

using much fewer views than SEE and majorly increased the computational cost

per view due to their use of least-squares minimisation and nonlinear optimisation

techniques. The computation time used by the optimisation strategy is reduced in

subsequent work by combining it with methods to observe scenes using fewer views.

An explanation of the observation performances for the presented strategies is

provided by an analysis, computed from the standard model experiments, of the

mean number of views and travel distance required to successfully observe each
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SEE Mean Eigenvector Geodesic Optimisation

Number of Views 6.29 7.37 6.75 4.17 3.70
Distance Travelled (m) 2.68 2.17 2.16 1.88 1.13

Table 4.2: The mean number of views obtained and sensor distance travelled per
frontier point for SEE and the strategies presented to propose unoccluded views.
This analysis is calculated from the 100 experiments on each of the standard models.

frontier point (Table 4.2). The analysis shows that the geodesic and optimisation

strategies successfully observe frontier points using fewer views than SEE while the

mean and eigenvector strategies typically require a greater number of views. All of

the presented strategies travel shorter distances to observe frontiers than SEE, with

the optimisation strategy travelling the least. This demonstrates that the geodesic

and optimisation strategies are the most successful at proposing unoccluded views.

The mean and eigenvector strategies are able obtain scene observations using

fewer overall views than the geodesic and optimisation strategies despite being less

successful at observing target frontier points (i.e., they require more views and

greater travel distances to observe each frontier; Table 4.2). This is the result of the

mean and eigenvector strategies failing to propose unoccluded views and instead

utilising incremental view adjustments to obtain successful observations. These

adjusted views are inadvertently able to attain large increases in scene coverage as

multiple views are obtained while the sensor moves farther into unobserved scene

regions. This means that these strategies can only observe scenes using fewer views by

sacrificing the reliability of frontier observations for greater scene coverage per view.

In contrast, the geodesic and optimisation strategies are able to propose unoc-

cluded views with greater reliability from which target frontier points can be

successfully observed without requiring incremental views adjustments. This

improvement in the efficiency of frontier observations means that fewer views

and shorter travel distances are required to observe each frontier point (Table 4.2)

but the increase in surface coverage obtained from each view is reduced as fewer

measurements are captured from unobserved scene regions. Therefore more views

are required to obtain complete observations. The optimisation strategy is able
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to consistently observe scenes by travelling the shortest overall distances despite

capturing more views as it achieves a significant reduction in the distance travelled

per view but a similar improvement is not achieved by the geodesic strategy.

The objective of these strategies for proactively handling occlusions is to reliably

propose unoccluded views from which target frontier points can be successfully

observed. The optimisation strategy is shown to best achieve this objective as it

observes frontier points with the greatest efficiency (Table 4.2) and is thus able to

obtain scene observations using the shortest travel distances. This strategy does

incur an increase in computation time but when observing scenes in the real world

this would be offset by a reduction in the time required to move between views. A

significant reduction in the number of views required to obtain scene observations is

not achieved but this challenge is address independently in the following chapter by

investigating methods for considering scene visibility when selecting next best views.

In summary, the work presented in this chapter makes three key contributions:

1. A computationally efficient method for detecting point-based occlusions.

2. A novel representation for encoding pointwise occlusion information.

3. An investigation of several strategies for proposing unoccluded views.
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This chapter presents an investigation of methods for considering scene visibility

when selecting next best views with an unstructured scene representation. The

objective of this work is to increase the efficiency of scene observations by obtaining

greater improvements in the coverage of scene surfaces from each captured view with-

out requiring significantly longer travel distances between views. This can improve

the observation performance of a NBV planning approach as it is possible to obtain

highly complete coverage of scene surfaces using fewer views and less travelling.

96
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The visibility of a scene from a set of proposed views can be quantified by the

proportion of surfaces within the scene volume that are visible from at least one view.

Visible surfaces are often observable from multiple view proposals so it is possible to

obtain a complete scene observation by capturing a subset of views. This is achieved

by selecting next best views with good visibility of unobserved and incompletely

observed scene regions that can most improve the coverage of a scene observation.

The remainder of this chapter is organised as follows. Existing methods for

evaluating scene visibility with structured approaches are reviewed in Section 5.1.

Graphical representations for encoding the visibility of frontier points from proposed

views, including a novel covisibility graph, are presented in Section 5.2. Next best

view selection metrics that utilise the information encoded in this covisibility graph to

consider the visibility of frontiers when selecting views are investigated in Section 5.3.

The observation performance of these metrics is evaluated experimentally in compar-

ison with SEE. The results are presented in Section 5.4 and discussed in Section 5.5.

The work presented in this chapter makes four key contributions:

1. An investigation of graphical representations for encoding information on the

shared visibility of frontier points between proposed views.

2. The formulation of a novel covisibility graph for representing directed visibility

relationships between individual views and frontier points.

3. An investigation of next best view selection metrics that utilise a graphical

representation to consider frontier visibility when selecting views.

4. A next best view selection metric capable of selecting views that can provide

significant improvements in surface coverage while travelling short distances.

5.1 Existing Methods

Scene visibility is quantified by determining the number, surface area or volume

of represented manifolds within the viewing frustum of a sensor placed at a given

view. NBV planning approaches with volumetric representations typically evaluate

the number or cumulative entropy of voxels with a given state that are visible from

a view. Approaches with surface representations often compute the coverage of a
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triangulated mesh obtained from an initial observation by evaluating the surface

area of the mesh that is visible from a set of proposed views. The visibility of

manifolds in structured representations (e.g., voxels and triangulated surfaces) is

typically evaluated using raycasting. As discussed in Chapter 4 raycasting is not

suitable for assessing the visibility of zero-dimensional manifolds (i.e., points) in an

unstructured representation. The methods used for evaluating manifold visibility

therefore differ between these types of representation but similar metrics can be

used to quantify scene visibility based on the number and mensuration of manifolds.

Volumetric approaches consider scene visibility by quantifying the unobserved

space visible from each view. Most approaches with categorical voxel representations

count the number of visible unobserved voxels (e.g., Connolly 1985; Massios and

Fisher 1998; Banta et al. 2000; Vasquez-Gomez et al. 2014; Yoder and Scherer 2016;

Monica and Aleotti 2018a). Some approaches restrict the counting to a subclass

of unobserved voxels such as occplane voxels (Massios and Fisher 1998), occluded

voxels (Banta et al. 2000) or frontier voxels (Yoder and Scherer 2016). Vasquez-

Gomez et al. (2014) also count the number of occupied voxels to determine the

overlap of a view with previous measurements. Approaches with a probabilistic voxel

representation typically compute the cumulative entropy of visible voxels, as defined

by their occupancy probability (e.g., Delmerico et al. 2018; Daudelin and Campbell

2017). Voxel visibility is also defined probabilistically for these approaches. Bircher

et al. (2018) compute the cumulative volume of visible unobserved voxels. Selin

et al. (2019) generalise the consideration of visibility to regions of unobserved space,

defined using sparse raycasting, whose volume is computed by cubature integration.

Approaches with a surface representation quantify scene visibility based on the

surface area of the triangulated mesh visible from a view (e.g., Reed and Allen 2000;

Hollinger et al. 2012; Khalfaoui et al. 2013; Roberts et al. 2017; Peng and Isler 2019).

Many multistage observation approaches aim to find a set of views that can provide

the greatest improvement in the initial surface mesh given certain constraints and

plan an observation trajectory to capture the measurements (e.g., Hollinger et al.

2012; Roberts et al. 2017; Peng and Isler 2019). Sufficient views are sampled to
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provide complete coverage of the initial mesh and a subset with the best coverage

is selected. View coverage can be quantified by the visible surface area, the angle of

incidence between the view orientation and the mesh, a potential improvement in

mesh density from new measurements or an estimated reduction in mesh uncertainty.

The subset of views can be of fixed size or new views can be added until a coverage

criterion is satisfied. Some approaches select next best views iteratively to observe

the greatest area of surfaces whose visibility was occluded, either partially or fully,

from previous views (e.g., Reed and Allen 2000; Khalfaoui et al. 2013).

Approaches using a combination of volumetric and surface representations

typically consider scene visibility by quantifying both the unobserved space and

mesh surface area visible from each view. Kriegel et al. (2015) use a weighted sum of

the mean entropy for all visible voxels and a mesh quality metric. The mesh quality

is evaluated as a weighted sum of the average mesh density and the percentage

of boundary edges in the visible region of the mesh. Song and Jo (2018) consider

the visibility of frontier voxels and points extracted from a surface mesh. Sufficient

views are sampled to provide coverage of every surface point and a subset of views is

selected that still maintain complete coverage. An observation trajectory is planned

through the subset of views in order to provide coverage of all frontier voxels within

a given distance of the path. Monica and Aleotti (2018b) present a hybrid surfel

representation which quantifies visibility based on the cumulative surface area of

visible frontels (i.e., surfels at the boundary of observed and unobserved space).

The investigation of methods for considering scene visibility with an unstructured

representation presented in this chapter does not directly utilise techniques from

structured representations but applies manifold counting (i.e., the number of frontier

points), as used by many volumetric approaches, and considers the coverage of repre-

sented manifolds (i.e., the visibility of frontiers) from a set of view proposals, similar

to the mesh coverage computed by many approaches with a surface representation.
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5.2 Constructing a Visibility Graph

The improvement in scene coverage obtainable from a view proposal can be quantified

by considering the number of visible frontier points. The visibility of a frontier point

from a given view is determined using the occlusion detection approach presented

in the previous chapter (Sec. 5.2.1). The visibility of frontier points from the set of

proposed views is encoded in a graphical representation, G = (V,E), where view

proposals are represented by the set of vertices, V , and the edges between them, E,

denote the visibility relationships that are considered when selecting a next best view.

This section presents an investigation of two graphical representations for

encoding the visibility of frontier points: a covering visibility graph and a complete

covisibility graph. The covering visibility graph determines the visibility of each

frontier point from every proposed view and computes a minimal subset of view

proposals sufficient to obtain an observation of every frontier. In this graph the

subset of views are represented by vertices and fully connected with undirected

edges denoting the travel distance between every pair of views (Sec. 5.2.2).

The complete covisibility graph is a novel representation that encodes information

on the shared visibility of each frontier point from multiple view proposals. In this

graph every view proposal is represented by a vertex in the graph and directed edges

denote that the frontier point associated with the child vertex of an edge is covisible

(Sec. 5.2.3) from the view proposal associated with the parent vertex (Sec. 5.2.4).

5.2.1 Determining Frontier Visibility

The visibility of a frontier point from a proposed view is determined using the

adaptive search method for detecting occlusions (Sec. 4.2.3). This searches the

sight line between a view and frontier for occluding points. It provides a sufficient

determination of visibility when the view distance is large enough that a significant

proportion of the scene volume lies within the viewing frustum of the sensor.

If a scene is observed at a relatively short view distance it may also be desirable

to ensure that the sight line is within the viewing frustum of the sensor. This is

guaranteed when determining the visibility of a frontier point from its associated view
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as the view is proposed with a sight line intersecting the frontier. It is not known to be

true when evaluating the visibility of a frontier point from a different view proposal.

The frustum visibility of a frontier can be computed exactly if the full sensor

pose is known by defining a frustum from the sensor field-of-view and computing

its intersection with the sight line. If the full sensor pose is not known then the

viewing frustum can be approximated by a viewing cone with its apex at the view

position and an axis defined by the view orientation. In this case a frontier point is

considered visible if the angle between the view orientation, φj, and the reverse of

the sight line, wkj, from the frontier point, fk, to the view position, xj, is less than

angle of the viewing cone, as defined by the minimum sensor field-of-view angle,

arccos

(

− wkj · φj

||wkj|| ||φj||

)

< θmin , (5.1)

where θmin is the minimum of horizontal, θx, and vertical, θy, field-of-view angles.

This consideration of frustum visibility was investigated but ultimately not

included as SEE represents views using position and orientation vectors rather

specifying a complete sensor pose. The viewing cone approximation was evaluated

but found to be too restrictive for sensors with an oblong viewing frustum (e.g., a

LiDAR with θx = 90° and θy = 30°). The detection of occluding points can provide

a sufficiently robust evaluation of frontier visibility as it is capable of identifying

the restricted visibility of sight lines that have an acute angle with scene surfaces.

5.2.2 Covering Visibility Graph

The covering visibility graph is used to represent a sufficient subset of view

proposals to provide visibility of every frontier point (Fig. 5.1). The graph is

fully connected with undirected edges denoting the travel distance between views.

This representation is best suited for planning a trajectory of next best views that

can obtain an observation of every frontier point or observe the greatest number of

frontiers while travelling the shortest distance. A suitable view trajectory can be

found by computing a solution to the Travelling Salesman Problem (TSP). Similar

approaches are presented by Song and Jo (2017) and Song and Jo (2018).
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Figure 5.1: An illustration of the covering visibility graph representation. The
chosen set of view proposals from which all frontier points (black dots) are visible
is shown as a set of sensors in black. Unselected view proposals are shown in grey.
The black line connecting the chosen view proposals represents a view trajectory.

The subset of view proposals used to construct the covering visibility graph is

found by computing an approximate solution to the minimum covering set problem

(Karp 1972). This can be formally expressed as a covering set for the set of all

view proposals, W ′ ⊆ W , which satisfies the constraint that every frontier in the

set of all frontiers, F , must be visible from at least one view,

W ′ ⊆ W s.t. F ≡
⋃

v∈W ′

Fv , (5.2)

where Fv is the set of frontiers visible from a given view, v.

Karp (1972) shows that finding the minimum covering set is an NP-complete

problem and therefore it is only possible to find an approximate solution in

polynomial time. An approximate solution can be found using a greedy algorithm

(Chvatal 1979). At each iteration a view is selected with the greatest number of

visible frontier points that are not yet covered. New views are chosen until coverage

of every frontier point is attained. Chvatal (1979) shows that the covering set found

has a cardinality no larger than log(|W |) times that of the minimal set.

Views in the covering set are represented by vertices in an undirected graph. The

travel distance between every pair of views is associated with an edge connecting the

corresponding vertices, making the graph fully connected. A view trajectory can be
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planned using this connectivity with the aim of obtaining the greatest improvement

in scene coverage while travelling the shortest distance. This trajectory can be

unconstrained in order to improve global scene coverage or constrained by a limit

on the number of visited view proposals and travel distance.

The use of a trajectory planning method to select a sequence of next best views

demonstrated that significant increases in global scene coverage could be obtained

at the expense of producing numerous local regions of partially observed surfaces.

This was the result of obtaining new point measurements, some classified as frontier

points, from unobserved scene surfaces that were not considered until the covering

graph was updated to include their view proposals and a new view trajectory was

planned. These new trajectories were typically required to re-traverse a similar path

in order to fully observe the new frontier points, increasing the overall travel distance.

The coverage of local scene regions was improved by using constrained view

trajectories (i.e., limited by a number of views or travel distance) but this incurred

an increase in computational time due to the complexity of performing frequent

updates to the minimum covering set of vertices and the graph connectivity. Using

shorter trajectories also reduced the obtainable improvement in scene coverage.

Therefore, while a covering visibility graph may be a suitable representation for

NBV planning approaches that obtain measurements from a single view trajectory

and then process them offline (e.g., many surface-based approaches), it is not a

suitable choice for a NBV planning approach that performs incremental measurement

updates. This motivated the formulation of a covisibility graph that can be updated

more efficiently and encode detailed information on local scene coverage.

5.2.3 Defining Covisibility

Covisibility is a novel concept that refers to the shared visibility of a given frontier

point from multiple view proposals. A covisibility relationship exists between two

proposed views, vi and vj, if the frontier point associated with one of the views, fi

or fj, is visible from the other view. The covisibility between views is encoded in a

graphical representation using directed edges (Fig. 5.2). A directed edge from a
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Figure 5.2: Illustrations of the different covisibility relationships (grey arrows)
that can exist between two views (black sensors), vi = {xi,φi} and vj = {xj,φj},
for their associated frontier points (black dots), fi and fj. (a) shows two views
that share a bidirectional covisibility relationship as the frontier point fi is visible
from the view vj and an equivalent relationship exists between the view vi and the
frontier point fj. (b) illustrates a unidirectional covisibility relationship between
two views in which the frontier point fi is visible from the view vj but the frontier
point fj is not visible from the view vi due to the presence of an occluding surface.

parent vertex, vi, to a child vertex, vj, denotes that the frontier point associated

with the child vertex, fj, is covisible from the view associated with the parent vertex.

The covisibility relationship between two views can be bidirectional if each of the

associated frontier points is visible from both views (Fig. 5.2a) or unidirectional if

only one of the views has unoccluded visibility of both frontier points (Fig. 5.2b).

5.2.4 Complete Covisibility Graph

The complete covisibility graph represents the set of all view proposals and their

shared visibility of frontier points (Fig. 5.3). It encodes detailed information on

the number of frontiers visible from each proposed view and the covisibility of

frontier points between views. This makes it easy to identify which view proposals

can provide the best local improvement in scene coverage while incurring short
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Figure 5.3: An illustration of the complete covisibility graph representation. The
connectivity between a set of view proposals (black sensors) is represented with
directed edges (grey arrows). An edge from a parent view to a child view denotes
that the frontier (black dots) associated with the child is visible from the parent.

travel distances. The graph can be efficiently updated when new measurements are

obtained as only local computations are performed when adding and removing views.

The complete graph is constructed by determining the covisibility between views

of the frontiers they were proposed to observe. Every frontier point is associated

with the view proposed to observe it. This association is represented by a frontier-

view pair, m = {v, f}, denoting that the view, v, is proposed to observe the frontier

point, f . The complete covisibility graph is a directed graph, G = (M,E), which

represents the shared visibility between these pairs. Vertices in the graph represent

frontier-view pairs. An edge, (mj, mk) ∈ E, exists from a parent vertex, mj, to a

child vertex, mk, if the child frontier point, fk, is visible from the parent view, vj,

D′(fk,vj) ≡ ∅ =⇒ (mj, mk) ∈ E , (5.3)

where D′(f ,v) is the set of occluding points found by the adaptive search as in (4.4).

The graph is updated when a new set of sensor measurements is obtained and

after all point classifications and view updates have been performed. Vertices

associated with frontiers that have been reclassified are removed and vertices are

added to represent new frontier-view pairs. The graph connectivity is updated by

removing all edges associated with a parent or child vertex that no longer exists.
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New edges are added by evaluating the visibility of new frontier points from existing

view proposals and the visibility of all frontier points from new view proposals.

The complete covisibility graph provides a more detailed representation of the

shared visibility between view proposals than a covering graph. Every view proposal

is represented rather than only a covering subset and each edge denotes the visibility

of a specific frontier point from a given view in addition to the required travel

distance between the proposed views. The number of view proposals with visibility

of a given frontier point is denoted by the indegree (i.e., the number of incoming

edges), deg−(m), of the vertex associated with its frontier-view pair. The number

of frontiers that are visible from a view is given by the outdegree (i.e., the number

of outgoing edges), deg+(m), of the vertex corresponding to the frontier-view pair.

This information is used to select next best views by considering the number of

frontiers visible from a view and the set of view proposals from which a given frontier

point is visible. Views can be chosen to observe a specific frontier point while also

providing the greatest coverage of other frontiers. Metrics for selecting next best

views using a complete covisibility graph are discussed in the following section.

5.3 Selecting a Next Best View

Next best views are selected to provide the greatest improvement in scene coverage

within certain constraints (e.g., travel distance or the visibility of a specific frontier

point). This section presents different metrics for selecting next best views using a

complete covisibility graph. These metrics aim to improve the efficiency of scene

observations by selecting views to observe frontier points with poor visibility or

maximise the number of visible frontiers while reducing the required travel distance.

5.3.1 Global Minimum Covisibility

The complete covisibility graph encodes information on which view proposals can

observe each frontier point. Frontiers that are visible from fewer views are more

likely to lie on occluded surfaces. Improving the coverage of a scene observation

depends on obtaining sensor measurements from these occluded surfaces. It can be
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mi+1

Figure 5.4: An illustration of the Global Minimum Covisibility (GMC) metric for
selecting next best views. Vertices (grey dots) in the complete covisibility graph
are connected with edges denoting visibility (black arrows). The next best view is
associated with the vertex (black circle), mi+1, that has the smallest indegree.

advantageous to prioritise the observation of frontier points with limited covisibility

(i.e., few observing views) to ensure that poorly observed regions (i.e., those with low

measurement density) are fully observed before the scene observation is extended into

unobserved space. The selection of views to observe frontiers with limited covisibility

is prioritised by considering the indegree of vertices in the complete covisibility graph.

The Global Minimum Covisibility (GMC) metric selects a next best view, vi+1,

to observe the frontier point that is visible from the least number of views (Fig. 5.4).

This is achieved by selecting the view proposal corresponding to a vertex in the

graph with lowest indegree (i.e., the fewest incoming edges),

mi+1 = arg min
m∈M

(

deg−(m)
)

. (5.4)

If multiple vertices have the same minimum number of incoming edges then the next

best view is the proposed view in this subset closest to the current sensor position.

Selecting next best views using the GMC metric prioritises improving the

coverage of poorly observed scene regions over selecting views that may obtain a

greater increase in coverage by extending the scene observation into unobserved

space. This can be advantageous when obtaining a scene observation using a system

with strict time or energy constraints that may preclude the capture of a complete

observation. In this scenario it may be preferable to obtain complete coverage of

one scene region rather than partial coverage of the entire scene. However, when

observing scenes with an unconstrained system it is usually better to prioritise
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mi+1

Figure 5.5: An illustration of the Global Maximum Visibility (GMV) metric for
selecting next best views. Vertices (grey dots) in the complete covisibility graph
are connected with edges denoting visibility (black arrows). The next best view is
associated with the vertex (black circle), mi+1, that has the greatest outdegree.

obtaining the best improvement in scene coverage from every view as this typically

provides a greater reduction in the number of views required to obtain an observation.

5.3.2 Global Maximum Visibility

Obtaining a scene observation using the fewest number of views is typically achieved

by greedily selecting next best views with the greatest number of visible frontier

points. In a complete covisibility graph the number of frontiers visible from a

proposed view is given by the number of outgoing edges from its associated vertex.

The Global Maximum Visibility (GMV) metric selects a next best view, vi+1,

to observe the greatest number of frontier points (Fig. 5.5). This is achieved by

selecting the view proposal associated with a vertex in the graph that has the

greatest outdegree (i.e., the most outgoing edges),

mi+1 = arg max
m∈M

(

deg+(m)
)

. (5.5)

If multiple vertices have the same maximum number of outgoing edges then the next

best view is the proposed view in this subset closest to the current sensor position.

Next best views selected with the GMV metric usually provide the greatest

improvement in scene coverage and allow an observation to be completed using the

fewest number of views. The cost of this improved observation performance is often

an increase in sensor travel distance between views as there is no constraint on how

far the sensor can travel to obtain a view with the most visible frontier points. The
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Figure 5.6: An illustration of the Local Maximum Visibility (LMV) metric for
selecting next best views. Vertices (grey dots) in the frontier visibility graph are
connected with edges denoting visibility (black arrows). The sensor represents the
current view, vi = {xi,φi}. The next best view is associated with the vertex (black
circle), mi+1, that has the greatest outdegree and can observe the frontier associated
with the vertex (grey circle), mc, whose view is closest to the sensor position.

overall travel distance can be lower than when using other view selection metrics if

the reduction in the number of views obtained is significant enough to outweigh the

increased travel distance between the views, but this is not guaranteed.

5.3.3 Local Maximum Visibility

The travel distance between views can be implicitly constrained by requiring the

visibility of frontier points associated with views close to the current sensor position.

This prioritises the selection of next best views whose viewing frustums overlap with

the current view frustum and prevents the sensor from moving to capture views of a

distant unobserved scene region instead of obtaining new measurements from nearby

regions that are poorly observed. A suitable choice of frontier for constraining the

sensor travel distance is the point associated with the view proposal closest to the

current sensor position. The best possible improvement in scene coverage can be

obtained while satisfying this constraint by selecting a next best view with the

maximum number of visible frontier points from the set of permissible views.

The Local Maximum Visibility (LMV) metric selects a next best view, vi+1,

to observe the greatest number of frontier points while requiring the visibility of

the frontier point associated with the vertex whose view proposal, mc, is closest

to the current view (Fig. 5.6). This is achieved by selecting the next best view

from a vertex set, Mc, containing the closest view proposal and the parent vertices
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of incoming edges to the vertex,

Mc := {mc} ∪ {m ∈M | (m, mc) ∈ E} , (5.6)

where vi = {xi,φi} denotes the current view and

mc = arg min
m∈M

(||x− xi||) . (5.7)

The next best view selected from this set has the greatest number of outgoing edges,

mi+1 = arg max
m∈Mc

(

deg+(m)
)

. (5.8)

If multiple vertices have the same maximum number of outgoing edges then the view

proposal in this subset closest to the current sensor position is the next best view.

Selecting next best views using the LMV metric reduces the travel distance

required per view when compared with the GMV metric that chooses views to

maximise the global improvement in scene coverage. The observation of poorly

observed scene regions close to the current sensor position is prioritised and a next

best view is selected to provide the best improvement in scene coverage possible

within the constrained set of permissible views. The reduction in travel distance

provided by using this metric is limited as the frontier visibility requirement only

implicitly constrains the travel distance. For example, when choosing between a view,

vi, at a given distance, x, from which n frontier points are visible and a view, vj, at

a distance, 2x, from which n+ 1 frontiers are visible, the second view will be chosen

even though it requires twice the travel distance to obtain a marginally greater

improvement in scene coverage. A more efficient metric would explicitly consider the

travel cost associated with observing each frontier when selecting a next best view.

5.3.4 Local Maximum Visibility-Distance Ratio

The Local Maximum Visibility-Distance Ratio (LMR) metric still prioritises the

selection of views that can provide the best improvement in scene coverage but also

considers the diminishing return of moving farther than necessary. An observation

value for views which explicitly considers the sensor travel distance is quantified by
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Figure 5.7: An illustration of the Local Maximum Visibility-Distance Ratio
(LMR) metric for selecting next best views. Vertices (grey dots) in the frontier
visibility graph are connected with edges denoting visibility (black arrows). The
sensor represents the current view, vi = {xi,φi}. The next best view is the view
associated with the vertex (black circle), mi+1, that has the greatest outdegree
relative to its distance from the sensor position, xi, and can observe the frontier
associated with the vertex (grey circle), mc, whose view is closest to the sensor.

a ratio between the number of visible frontier points and the required travel distance.

This evaluation penalises the relative value of views that are far away from the current

sensor position but are not likely to provide a significantly greater improvement in

the scene observation than closer views with fewer visible frontier points.

A next best view, vi+1, is selected to observe the greatest number of frontier

points while travelling the shortest distance from the current view (Fig. 5.7). The

frontier point associated with the vertex having the closest view proposal, mc, to

the current view, vi = {xi,φi}, is required to be visible from the selected view,

as discussed in Section 5.3.3, and the same vertex set containing mc and parent

vertices of its incoming edges is computed, as in (5.6). The next best view is

the view proposal in this set with the greatest number of outgoing edges relative

to the required travel distance,

mi+1 = arg max
m∈Mc

(

deg+(m)

||x− xi||

)

. (5.9)

This equation produces a ratio between the number of visible frontiers and

required travel distance that is often significantly greater for the view proposal

closest to the current sensor position than other permissible views. The result is

that in most circumstances the closest view proposal is selected as the next best

view, limiting the potential improvement in scene coverage. This bias is overcome by

the Exclusionary Local Maximum Visibility-Distance Ratio (EMR) metric, which
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excludes the closest view proposal from the set of permissible vertices and only

considers view proposals that can observe a greater number of frontier points than

mc (i.e., vertices with a greater number of outgoing edges),

M ′
c := {m ∈M | (m, mc) ∈ E ∧ deg+(m) > deg+(mc)} . (5.10)

If none of the evaluated view proposals have a greater outdegree than mc, M
′
c ≡ ∅,

then the next best view is chosen to be the closest view proposal, mi+1 = mc.

The LMR metric for selecting next best views directly considers the trade-off

between observation cost, as quantified by the travel distance, and performance,

as given by the number of visible frontier points. The overall efficiency of scene

observations is improved by reducing both the travel distance and number of views

required to obtain scene observations. The LMR metric formulation resulted in

the closest view proposal being weighted significantly higher than other views but

this limitation was overcome by creating the EMR metric. This only considers

permissible views with better frontier visibility than the closest view proposal.

5.4 Evaluation

The presented metrics for selecting next best views with a complete covisibility

graph are evaluated by substituting the view selection method used by SEE with an

implementation of each metric. Updating the complete covisibility graph becomes

computationally expensive when processing changes in connectivity for a large

number of frontier points. This can occur when a significant quantity of new frontiers

are identified after obtaining measurements from a sizeable scene region that was

previously unobserved. The resulting increase in computational cost is constrained

by using the view update limit (Sec. 4.4) to restrict connectivity updates for the

graph to the τ = 100 vertices with view proposals closest to the sensor position.

The performance of these metrics is compared with SEE by using the simulation

environment from Section 3.3. 100 experiments were performed on each of the stan-

dard models and the Radcliffe Camera using the same simulated sensors (Table 3.2),

algorithm parameters (Table 3.3) and performance metrics (Sec. 3.3.4).
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Newell Teapot (1 m) Stanford Bunny (1 m) Stanford Dragon (1 m)

Figure 5.8: An experimental comparison of SEE with the presented next best view
selection metrics. The graphs show the mean surface coverage obtained by SEE
and the presented metrics from 100 experiments relative to, from top to bottom,
the number of views, the mean computation time and the mean travel distance.
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Stanford Armadillo (1 m) Radcliffe Camera (40 m)

Figure 5.9: An experimental comparison of SEE with the presented next best view
selection metrics. The graphs show the mean surface coverage obtained by SEE
and the presented metrics from 100 experiments relative to, from top to bottom,
the number of views, the mean computation time and the mean travel distance.
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SEE GMC GMV LMV LMR EMR

Number of Views 56.9 37.1 30.4 30.8 34.3 30.8
Surface Coverage (%) 98.1 97.8 97.7 97.7 97.8 97.6
Computation Time (s) 9.91 6.58 5.33 5.41 6.23 5.53
Distance Travelled (m) 41.4 39.5 33.1 33.5 28.7 30.5

(a) Newell Teapot (Newell 1975)

SEE GMC GMV LMV LMR EMR

Number of Views 73.7 53.2 42.4 41.1 49.2 45.5
Surface Coverage (%) 99.5 99.6 99.6 99.5 99.5 99.6
Computation Time (s) 23.9 18.8 14.7 14.1 17.1 15.7
Distance Travelled (m) 55.7 55.9 49.5 46.0 42.5 44.0

(b) Stanford Bunny (Turk and Levoy 1994)

SEE GMC GMV LMV LMR EMR

Number of Views 79.2 56.8 43.2 45.7 52.2 45.3
Surface Coverage (%) 98.0 98.2 98.1 98.2 98.0 98.1
Computation Time (s) 15.6 12.5 9.33 9.77 11.8 10.1
Distance Travelled (m) 58.3 57.2 49.1 49.9 43.4 43.7

(c) Stanford Dragon (Curless and Levoy 1996)

SEE GMC GMV LMV LMR EMR

Number of Views 65.3 49.6 38.9 40.9 47.6 41.5
Surface Coverage (%) 99.3 99.2 99.3 99.5 99.4 99.3
Computation Time (s) 14.3 11.7 8.91 9.10 11.1 9.58
Distance Travelled (m) 50.3 51.2 44.8 46.7 41.6 41.1

(d) Stanford Armadillo (Krishnamurthy and Levoy 1996)

SEE GMC GMV LMV LMR EMR

Number of Views 63.5 44.5 34.1 34.1 37.6 35.7
Surface Coverage (%) 96.4 96.7 95.9 96.0 96.1 96.4
Computation Time (s) 75.5 71.2 49.7 50.1 55.3 53.0
Distance Travelled (m) 1280 1294 1139 1118 941 971

(e) Radcliffe Camera (Boronczyk 2016)

Table 5.1: The mean number of views captured, the mean surface coverage
obtained, the mean computation time used and the mean travel distance required to
observe four one-metre standard models (Newell Teapot, Stanford Bunny, Stanford
Dragon, and Stanford Armadillo) and a 40 metre model of the Radcliffe Camera,
calculated from 100 experiments with SEE and the presented view selection metrics.
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SEE GMC GMV LMV LMR EMR

Surface Coverage (%) 1.44 2.01 2.55 2.49 2.15 2.42
Distance Travelled (m) 0.75 1.04 1.14 1.11 0.85 0.98

Table 5.2: The mean surface coverage attained and distance travelled per view for
SEE and the evaluated metrics, calculated from the standard model experiments.

5.5 Discussion

The experimental results (Fig. 5.8; Fig. 5.9; Table 5.1) demonstrate the value of

selecting next best views using metrics that consider scene visibility. All of the

evaluated metrics outperform SEE, which uses a view selection metric that considers

sensor travel distance but not scene visibility, in terms of the computational cost

and number of views required to obtain observations for every model. The difference

in the mean number of views is particularly significant for the full-scale model of the

Radcliffe Camera as integrating any of the present metrics, except for GMC, with

SEE reduces the mean number of views required by more than 40% (Table 5.1e).

This can be attributed to the significant magnitude of visibility changes that occur

when moving a sensor at a far distance to observe a scene with large surface areas

as this increases the improvement gained by considering scene visibility.

Every metric except for GMC obtains scene observations using a lower mean

travel distance than SEE. The GMC metric uses a greater travel distance than

SEE when obtaining observations of the Stanford Bunny, Stanford Armadillo and

Radcliffe Camera. Its travel distance is only marginally lower than SEE for the

Newell Teapot and Stanford Dragon. As the GMC metric is formulated to prioritise

the observation of poorly observed regions over extending coverage of the scene it

often obtains a lower increase in surface coverage per view than the other metrics

(Table 5.2) and therefore requires more views to observe a scene. This produces a

greater overall travel distance as the increase in travel distance per view does not

correspond with a sufficient decrease in the number of views obtained.

The relative performance of the evaluated metrics was compared to determine

which provided the best overall improvement in observation efficiency and would
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be integrated into subsequent work on SEE. The statistical analysis presented in

Table 5.2 shows that no metric outperforms the others in terms of both surface

coverage and travel distance. The GMV metric, which selects a next best view

with the global maximum number of visible frontiers, obtains the greatest surface

coverage per view. The metric used by SEE, which selects views to reduce the

sensor travel distance, has the lowest travel distance per view. The metric that

provides the best overall improvement in observation performance when compared

to SEE is identified by considering the percentage improvement in surface coverage

relative to the percentage increase in distance. The EMR metric provides the greatest

improvement in observation performance as it increases the surface coverage per view

by 68% compared with SEE while only requiring a 31% increase in travel distance.

The observation performance of SEE is shown to be significantly improved by

considering scene visibility when selecting a next best view. The complete covisibility

graph encodes detailed information on the shared visibility of frontier points between

view proposals in an efficient representation. The investigation of different metrics

for selecting a next best view using this representation demonstrates the value of

considering scene visibility when selecting next best views. The metric with the

greatest observation performance, EMR, considers a ratio between the number of

visible frontier points and required travel distance. This metric and the optimisation

strategy for proactively handling occlusions (Ch. 4) are integrated with SEE to

create SEE++, an improved version of SEE that is presented in the following chapter.

In summary, the work presented in this chapter makes four key contributions:

1. An investigation of graphical representations for encoding information on the

shared visibility of frontier points between proposed views.

2. The formulation of a novel covisibility graph for representing directed visibility

relationships between individual views and frontier points.

3. An investigation of next best view selection metrics that utilise a graphical

representation to consider frontier visibility when selecting views.

4. A next best view selection metric capable of selecting views that can provide

significant improvements in surface coverage while travelling short distances.
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This chapter presents SEE++, a NBV planning approach with an unstructured

density representation which incorporates solutions to the challenges of proactively

handling occlusions and considering scene visibility when proposing and selecting

next best views. The best performing solutions to these challenges have been iden-

tified by the investigations presented in the preceding chapters as the optimisation

strategy for handling occlusions and the EMR metric for selecting next best views.

SEE++ is created by integrating these solutions with SEE. The resulting

approach is shown to have a significantly improved observation performance. It

is capable of proposing unoccluded views from which frontier points can be more

reliably observed without requiring incremental view adjustments. Next best views

are selected from which greater increases in surface coverage can be attained while
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moving short distances. This allows SEE++ to obtain highly complete scene

observations using fewer views and shorter travel distances than other approaches

while retaining the computational efficiency of an unstructured representation.

The SEE++ approach also improves on the usability of SEE by eliminating an

empirical selection of the view distance. The choice of view distance is important

when obtaining a scene observation as it determines the distribution of sensor

measurements over scene surfaces within the viewing frustum. In the unstructured

representation used by SEE and SEE++ the successful identification of frontiers

in an observation depends upon the measurement density. Frontier points can

be identified with the greatest reliability when the distribution of measurements

obtained within the sensor viewing frustum is similar to the target measurement

density. SEE++ incorporates a method for computing a suitable view distance which

satisfies this constraint by considering both the target density and sensor parameters.

This removes the uncertainty associated with selecting a view distance empirically

and ensures that frontier points can be successfully identified in a scene observation.

The work on SEE++ discussed in this chapter was presented in Border and

Gammell (2020) at the 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (App. C).

The remainder of this chapter is organised as follows. Section 6.1 details the

integration of SEE with the optimisation strategy for proactively handling occlusions

and the EMR view selection metric to create SEE++. Section 6.1.1 discusses two

methods for selecting a subset of view proposals on which occlusion handling and

updates to the frontier covisibility graph are performed. This is done to maintain

a bounded computational cost when processing occlusion and visibility updates.

Section 6.1.2 presents the method for computing a suitable view distance based on

the target measurement density and sensor parameters. Section 6.2 presents an

experimental comparison of the observation performance of SEE++ with SEE and

state-of-the-art volumetric approaches. The results are discussed in Section 6.3.

The work presented in this chapter makes three key contributions:
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1. SEE++, a NBV planning approach with an unstructured density representa-

tion which incorporates novel point-based techniques for proactively handling

occlusions and considering scene visibility when proposing and selecting views.

2. A method for computing a suitable view distance for obtaining scene observa-

tions by considering the target measurement density and sensor parameters.

3. An experimental comparison of SEE++ with SEE and volumetric approaches

showing the improvements in observation performance achieved by proposing

unoccluded views and selecting next best views with high surface coverage.

6.1 SEE++

SEE++ improves upon SEE by incorporating point-based reasoning for detecting

occlusions, proposing unoccluded views and considering the visibility of frontiers

when selecting next best views. This allows SEE++ to retain the computational

efficiency of an unstructured density representation while requiring fewer views and

shorter travel distances to obtain similarly complete scene observations as SEE.

The optimisation strategy (Sec. 4.3.5) is integrated with SEE++ to proactively

handle occlusions when proposing views and selecting a next best view. A frontier

point is consider to be occluded from a view if there are point observations within

an r-radius of the proposed sight line from the view position to the frontier point.

Occlusion detection (Sec. 4.2) is performed for the τ -nearest view proposals to the

current sensor position after new point measurements are obtained and processed.

Proactively handling known occlusions reduces the number of views and sensor

travel distance required to observe a scene. This is the result of requiring fewer

incremental view adjustments to observe frontier points as known occlusions are

avoided before views are obtained. Occluded view proposals are updated to avoid

known occlusions by considering the occluding points within a given radius, ψ,

around each frontier point and finding the furthest sight line from any occlusion.

Scene visibility is considered when selecting a next best view by encoding the

shared visibility of frontier points between views in a covisibility graph (Sec. 5.2.4).

This graph connects each frontier point to the view proposals from which it can be
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Algorithm 3 SEE++(v0, d, r, ρ, τ, ψ)

1: v← v0 ⊲ v is the current view and v0 is the initial view
2: f ← null ⊲ f is the target frontier point
3: G ← null ⊲ G is the frontier covisibility graph
4: P = C = F = O = ∅ ⊲ P is the complete point set, C is the core set,

F is the frontier set and O is the outlier set
5: while F 6= ∅ or f = null do
6: M ← get-measurements(v)
7: P,C, F,O ← classify-measurements(M,C,F,O, r, ρ)
8: if F 6= ∅ then
9: if f ∈ F then

10: v← adjust-view(M,v, f)

11: Y ← estimate-geometry(P, F,v, r)
12: W ← get-view-proposals(Y, F, d)
13: T ← get-nearest-views(W,v, τ)
14: Z ← update-occlusions(T, P, ψ)
15: G ← update-view-graph(G, Z, F, τ)
16: v, f ← select-nbv-emr-metric(G,v)

17: return complete

observed. The EMR metric (Sec. 5.3.4) is used to select a next best view from the

graph that is both close to the current sensor position and has a locally maximal

number of outgoing edges (i.e., visible frontiers). This restricts the travel distance of

the sensor while locally maximising the coverage of partially observed scene surfaces.

The usability of SEE is improved in SEE++ by computing a suitable view

distance based on the target measurement density and sensor parameters. This

provides a view distance from which a sufficient measurement density can be obtained

around frontiers to extend completely observed scene surfaces while ensuring that

frontier points are identified at the boundaries of partially observed scene surfaces.

An overview of SEE++ is shown in Algorithm 3. As with SEE, sensor measure-

ments are obtained and processed until there are no frontier points remaining (Lines

5–8). If the target frontier point associated with the current view is not successfully

observed then the view is adjusted, as in SEE, but is not automatically chosen as

the subsequent view (Lines 9–10). This allows for the consideration of alternative

views with visibility of the frontier and a further adjustment of the view proposal

to account for occlusions. The estimation of local surface geometry around frontier

points (Line 11) and the proposal of views (Line 12) are unchanged from SEE.
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A k-nearest neighbours (k-NN) search identifies a user-specified number, τ , of

view proposals, T , closest to the current sensor position for which occlusion handling

and updates to the covisibility graph are performed (Line 13). The motivation for

limiting the number of updated view proposals and using a k-NN search to select

a subset is discussed in Section 6.1.1. Occlusion detection and handling is then

performed for the selected views and an updated set of view proposals, Z, is obtained

(Line 14). The connectivity of each selected view in the covisibility graph, G, is

updated by evaluating the visibility of frontier points associated with the τ -nearest

view proposals to the selected view and an updated graph is returned (Line 15). A

next best view is then chosen from this graph using the EMR metric (Line 16).

6.1.1 Updating Occlusions and Visibility

In an ideal scenario the complete set of view proposals is evaluated when proactively

handling occlusions and updating the covisibility graph. This does not impact the

computation time of SEE++ in most cases as the cost per view to handle occlusions

and evaluate frontier visibility is relatively small. However, this cost can increase

substantially when a view is obtained of a large surface area that was previously

unobserved and from which a significant number of frontier points are identified. It

is typically not necessary to handle occlusions and compute covisibility for every

new view proposal in this case as many of the proposed views will share similar

poses and visibility of the same set of frontiers. A lower computational cost can be

achieved without reducing performance by limiting updates to nearby views.

Two search-based methods were investigated for selecting a subset of view

proposals based on their proximity to the current sensor position (Fig. 6.1). A

radius search selects a set of view proposals within a given radius, R, of the current

sensor position. This method allows the computational cost of updates to scale

with the distance of the sensor from the set of proposed views. Updating fewer view

proposals when the sensor is farther away is computationally efficient but reduces the

fidelity of visibility information in the covisibility graph as occlusions resulting from

newly obtained measurements are not accounted for when selecting a next best view.
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Figure 6.1: Cross-sectional illustrations of (a) selecting view proposals (grey
dots) using a radius search and (b) selecting view proposals using a k-NN search.
Using (a), updates are performed on all view proposals within a given radius,
R, of the current sensor position, xi. The number of views updated depends on
the radius parameter and the relative distance of view proposals from the sensor
position (e.g., the grey vs black sensor), which results in varying performance and
computational cost. Using (b), a fixed number of view proposals, τ , closest to the
current sensor position are always selected (black dots). This method provides
consistent performance and a bounded computational cost as the number of view
proposals updated is independent of their distance from the current sensor position.

When the sensor is close to the set of view proposals the computational cost can

increase substantially, particularly in regions with a high density of view proposals.

Using a k-NN search reduces the uncertainty in computational cost and improves

the fidelity of visibility information by ensuring that a given number of view

proposals, τ , close to the current sensor position are updated after every view is

obtained. Consistent updates of visibility information are provided for a given

number of nearby views whose visibility of frontier points may be occluded by

newly obtained measurements, regardless of how far the sensor is from the set of
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Figure 6.2: A cross-sectional illustration of the method for computing a suitable
view distance, d, for observing scene surfaces (grey). The distance is computed such
that the density of sensor measurements (black dots) within the volume, V , of the
viewing frustum (dashed lines) is equal to the target measurement density, ρ = ω

V
.

view proposals. An upper bound on the computational cost is provided by limiting

updates to a user-specified number of views. This is the method used by SEE++.

6.1.2 Computing a Suitable View Distance

The density of point measurements obtained from a given surface depends on the

sensor parameters and view distance. The number of measurements obtained is

defined by the sensor resolution, ω. This is typically quantified by horizontal, ωx,

and vertical, ωy, components such that ω = ωxωy. The distribution of measurements

on scene surfaces is determined by the sensor field-of-view components, θx and θy,

and view distance. The field-of-view components define a viewing frustum whose

surface coverage is given by the area of intersection between the frustum volume and

the scene surface, which varies with distance. As the sensor moves closer to a surface

the area of intersection decreases and the density of point measurements increases.

SEE and SEE++ identify frontiers in a scene observation based on changes

in the density of point measurements. The ability to successfully identify frontier

points from sensor measurements depends on the view distance. If the distance is

too large then the point measurements will be sparsely distributed and may all be

considered outlier points. When the sensor is too close to a surface the measurement

density can exceed the target density and all points will be classified as core points.
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A suitable view distance at which to observe a scene with a given measurement

density is computed from the sensor parameters and target density (Fig. 6.2). This

is the distance, d, at which the density of measurements within the viewing frustum,

whose height is given by the view distance, is equal to the target density, ρ,

d =

(

3ωxωy

4ρ tan 0.5θx tan 0.5θy

)
1

3

. (6.1)

The resulting view distance accounts for the existence of scene surfaces within the

viewing frustum that may be closer to the sensor than the target frontier point. It

ensures that the sensor is sufficiently close to surfaces to extend the scene observation

while allowing new frontiers to be identified at the boundaries of partial observation.

6.2 Evaluation

The observation performance of SEE++ is compared with SEE and the previously

evaluated volumetric NBV approaches by using the simulation environment discussed

in Section 3.3. 100 experiments were performed with every approach on each of

the standard models and the Radcliffe Camera model using the same simulated

sensors (Table 3.2), view constraints (Sec. 3.3.2), algorithm parameters (Table 3.3)

and performance metrics (Sec. 3.3.4) presented in Section 3.3. SEE++ uses the

same view update limit and occlusion search distances presented in Section 4.4.

6.3 Discussion

SEE++ is able to achieve remarkable improvements in observation performance

by considering occlusions and scene visibility when proposing and selecting next

best views. The value of these considerations is demonstrated quantitatively by

the experimental results (Fig. 6.3; Fig. 6.4; Table 6.1). SEE++ is shown to obtain

highly complete scene observations, of a similar quality to SEE and the evaluated

volumetric approaches, using significantly fewer views and shorter travel distances

than the other approaches while maintaining a competitive computational time.
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Newell Teapot (1 m) Stanford Bunny (1 m) Stanford Dragon (1 m)

Figure 6.3: A comparison of SEE++ with SEE and the volumetric approaches.
The graphs show the mean surface coverage obtained by SEE++, SEE and the
volumetric approaches from 100 experiments relative to, from top to bottom, the
number of views, the mean computation time and the mean travel distance.
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Stanford Armadillo (1 m) Radcliffe Camera (40 m)

Figure 6.4: A comparison of SEE++ with SEE and the volumetric approaches.
The graphs show the mean surface coverage obtained by SEE++, SEE and the
volumetric approaches from 100 experiments relative to, from top to bottom, the
number of views, the mean computation time and the mean travel distance.
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SEE++ SEE RSV RSE UV PC OA AF AE

Number of Views 22.3 60.0 105 105 105 105 105 105 105
Surface Coverage (%) 97.1 98.1 97.6 97.8 98.8 97.6 98.8 97.6 97.4
Computation Time (s) 20.1 4.13 196 200 194 198 194 196 196
Distance Travelled (m) 29.7 42.8 49.6 50.7 37.8 50.0 37.8 49.9 48.5

(a) Newell Teapot (Newell 1975)

SEE++ SEE RSV RSE UV PC OA AF AE

Number of Views 31.5 75.3 129 129 129 129 129 129 129
Surface Coverage (%) 99.4 99.5 97.6 95.1 99.5 98.9 99.5 96.4 97.4
Computation Time (s) 46.0 24.7 325 324 313 320 313 326 324
Distance Travelled (m) 40.9 56.3 64.8 62.7 45.1 62.9 45.1 64.3 59.8

(b) Stanford Bunny (Turk and Levoy 1994)

SEE++ SEE RSV RSE UV PC OA AF AE

Number of Views 35.5 78.0 130 130 130 130 130 130 130
Surface Coverage (%) 97.3 98.0 96.1 97.2 98.4 97.2 98.4 97.1 97.3
Computation Time (s) 34.0 15.4 311 311 300 306 300 306 311
Distance Travelled (m) 40.6 56.8 58.2 61.1 43.1 59.2 43.1 63.8 58.0

(c) Stanford Dragon (Curless and Levoy 1996)

SEE++ SEE RSV RSE UV PC OA AF AE

Number of Views 30.0 63.4 127 127 127 127 127 127 127
Surface Coverage (%) 99.2 99.2 98.2 98.0 99.8 98.9 99.8 99.1 98.0
Computation Time (s) 29.1 13.7 298 301 291 298 291 298 301
Distance Travelled (m) 35.4 50.3 59.2 59.2 43.5 62.7 43.5 67.3 57.5

(d) Stanford Armadillo (Krishnamurthy and Levoy 1996)

SEE++ SEE RSV RSE UV PC OA AF AE

Number of Views 27.1 64.5 130 130 130 130 130 130 130
Surface Coverage (%) 95.3 96.6 91.4 89.7 93.9 91.9 93.9 90.7 91.0
Computation Time (s) 121 74.4 648 630 674 622 675 628 650
Distance Travelled (m) 806 1302 4008 6375 1098 3272 1098 2615 1409

(e) Radcliffe Camera (Boronczyk 2016)

Table 6.1: The mean number of views captured, the mean surface coverage
obtained, the mean computation time used and the mean travel distance required to
observe four one-metre standard models (Newell Teapot, Stanford Bunny, Stanford
Dragon, and Stanford Armadillo) and a 40 metre model of the Radcliffe Camera,
calculated from 100 experiments with SEE++, SEE and the volumetric approaches.
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Figure 6.5: A statistical analysis of the number of views captured and maximum
distance travelled in order to successfully observe frontier points using SEE and
SEE++. The analysis is calculated from the standard model experimental results.

The most notable result for SEE++ is the reduction in sensor travel distance

required to obtain scene observations. SEE++ is able to observe scenes while

travelling less than the OA and UV volumetric approaches, which also account for

occlusions. This result demonstrates the importance of considering occlusions in

order to improve observation efficiency and the increased value of using a proactive

strategy that can adjust views. The OA and UV approaches evaluate voxel-

based occlusions when selecting a next best view but are not capable of proposing

unoccluded views using this knowledge and are restricted to selecting the least

occluded view from a fixed set of proposals. The fidelity of occlusion information

considered is also limited by the voxel resolution. In contrast, SEE++ uses pointwise

occlusion information to directly propose unoccluded views. This allows it to identify

and obtain views with good frontier visibility that require lower travel distances.

The improvement in observation efficiency resulting from proactively handling

occlusions with SEE++ is quantified by a statistical analysis of the number of views

captured and maximum distance travelled per frontier point for SEE and SEE++

(Fig. 6.5). The analysis shows that SEE++ typically obtains successful frontier

observations using fewer views and shorter travel distances than SEE. SEE++ is

4.5 times more likely to observe a frontier point with a single view than SEE. The

distance travelled by SEE++ to observe a frontier point is less than 3 m in 77% of

cases while SEE only observes a frontier within the same distance 69% of the time.

SEE++ directly considers the visibility of scene surfaces when selecting a next

best view with the aim of obtaining the greatest improvement in surface coverage

while moving short distances. The experimental results provide definitive evidence
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SEE SEE++

Surface Coverage (%) 1.44 3.29
Distance Travelled (m) 0.75 1.23

Table 6.2: The mean obtained surface coverage and sensor travel distance per
view for SEE and SEE++ calculated from the standard model experimental results.

that this goal is achieved as SEE++ is shown to obtain scene observations using

considerably fewer views than SEE and the evaluated volumetric approaches. The

graphs (Fig. 6.3; Fig. 6.4) visually demonstrate a rapid increase in the surface

coverage attained that visibly differentiates SEE++ from the other approaches.

A statistical analysis of the mean surface coverage obtained per view for SEE

and SEE++ (Table 6.2) shows that SEE++ obtains more than twice as great an

increase in coverage per view as SEE. The analysis demonstrates this improvement

is achieved at the cost of incurring a greater mean travel distance per view. However,

the magnitude of the reduction in the number of views required is sufficient to allow

scene observations to be obtained using a shorter overall travel distance than SEE.

The improvements in observation performance achieved by SEE++ are attained

at the expense of an increase in computational cost. The experimental results

demonstrate that in the best case, for the Radcliffe Camera, SEE++ obtains

observations with a mean computation time that is 63% greater than SEE and in

the worst case, for the Newell Teapot, SEE++ utilises a mean computation time

that is almost five times greater than SEE. This increase in computational cost is

primarily incurred by the optimisation strategy for proposing unoccluded views.

SEE++ is shown to retain a significantly greater computational efficiency than

the evaluated volumetric approaches despite the increase in computation time.

SEE++ can maintain a computational advantage as it is only necessary to evaluate

changes in occlusions and scene visibility for views close to the current sensor

position. Furthermore, the costly computation of the view optimisation strategy is

only incurred for views that are found to be occluded. By contrast, the volumetric ap-

proaches perform computationally expensive raycasting to evaluate the information

gain associated with every proposed view before selecting a next best view.
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This chapter presents a culmination of work that leverages the strengths of an

unstructured scene representation to create a NBV planning approach capable of

obtaining highly complete observations with remarkable efficiency. SEE++ utilises

the high-fidelity pointwise scene information encoded in the density representation of

SEE to proactively handle occlusions and quantify scene visibility before obtaining

a next best view. This increases the likelihood that a target frontier point will

be successfully observed and that the view obtained will provide a significant

improvement in the coverage of scene surfaces. SEE++ improves the usability of

SEE by incorporating a method for computing a suitable view distance based on the

target measurement density and sensor parameters. The experimental comparison

of SEE++ with SEE and state-of-the-art volumetric NBV planning approaches

demonstrates that it is capable of observing scenes using significantly fewer views

and shorter travel distances than all of the other approaches while retaining a

greater computational efficiency than those using a volumetric representation.

The following chapter presents a demonstration of the real world observation

performance of both SEE and SEE++. Observations are obtained of several scenes

with different scales and structural complexity using multiple sensing modalities. The

qualitative and quantitative results presented demonstrate a successful transference

of the capabilities of SEE and SEE++ from the observation of models in a simulation

environment to observing real world scenes with a stereo camera and LiDAR sensor.

In summary, the work presented in this chapter makes three key contributions:

1. SEE++, a NBV planning approach with an unstructured density representa-

tion which incorporates novel point-based techniques for proactively handling

occlusions and considering scene visibility when proposing and selecting views.

2. A method for computing a suitable view distance for obtaining scene observa-

tions by considering the target measurement density and sensor parameters.

3. An experimental comparison of SEE++ with SEE and volumetric approaches

showing the improvements in observation performance achieved by proposing

unoccluded views and selecting next best views with high surface coverage.
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This chapter presents experiments demonstrating the observation capabilities of

SEE and SEE++ in the real world. Observations were obtained of several scenes with

varying sizes and structural complexities using multiple different sensing modalities.

Qualitative pointcloud results show that both approaches were able to obtain

largely complete observations despite the presence of sensor noise. Quantitative

performance metrics demonstrate the improved efficiency of SEE++ as it was able

to observe all of the scenes using fewer views and shorter travel distances than SEE.

132
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Obtaining observations of real world scenes using SEE and SEE++ introduced

two key challenges that were not captured in the simulation environment: sensor

noise that varies with the visual properties of the surface being observed and the

need to obtain an accurate estimate of the sensor pose. The model of sensor noise

used in the simulation environment is sufficient to demonstrate the ability of SEE

and SEE++ to handle measurements that deviate from a true surface but does not

consider failures in depth estimation that produce erroneous values or in some cases

no estimate at all. When observing the real world using a given sensor it is often not

possible to obtain reliable measurements from certain surfaces due to their visual

properties (e.g., colouring, reflectivity or texture). This challenge was addressed in

the real world experiments by applying noise filtering to sensor measurements and

using parametrisations that were robust to any remaining measurement noise.

The problem of pose estimation is not considered in the simulation experiments

as the sensor and model poses are explicitly specified and defined in a global

coordinate frame. In the real world it is not possible to explicitly define the sensor

pose within a virtual coordinate frame. Instead it is necessary to estimate the

sensor pose relative to a known reference frame. The relative pose of a sensor can

be estimated from its egomotion (i.e., its movement relative to the scene structure

observed with sensor measurements) or using an external tracking system. Using

an egomotion approach to estimate the sensor pose allows scenes to be observed

without an external system but requires the use of a relative coordinate frame.

Egomotion estimation tracks incremental pose changes between sensor mea-

surements and represents the current sensor pose relative to the initial pose of the

sensor by accumulating the incremental transformations. This technique is typically

prone to increasing drift in the sensor pose due to the accumulation of errors from

each incremental estimate and requires a bounding box for the scene to be specified

relative to the initial sensor pose. Developing better techniques to estimate relative

egomotion is an active area of research. To isolate the performance of SEE and

SEE++ from the ongoing research into relative pose estimation the sensor pose was

estimated using an external tracking system that defined a known coordinate frame.
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The scenes were observed independently using either a stereo camera or a LiDAR

sensor. This demonstrates the ability of SEE and SEE++ to generalise between

sensing modalities with different capabilities. Stereo cameras can typically obtain

accurate measurements of surfaces with unique visual features at short distances but

are unable to obtain reliable measurements, if a measurement can be obtained at all,

from surfaces with uniform or repetitive features and surfaces farther from the sensor.

LiDAR sensors can obtain accurate measurements at longer ranges than stereo

cameras as their depth estimation does not depend on the identification of unique

visual features. The noise associated with LiDAR measurements typically has a

lower variability than stereo cameras when observing most surfaces, except when

observing surfaces with high reflectivity. The sensor resolution is lower than that

of stereo cameras and measurements are obtained along scan lines, resulting in a

non-uniform distribution of measurements within the sensor field-of-view.

The stereo camera and LiDAR sensor were attached to a handheld sensor wand

together with a set of markers whose position and relative configuration defined a

coordinate frame for the wand which could be tracked by an external Vicon system

(Sec. 7.1). The Vicon defined a coordinate frame with a known origin in the real

world that was used to specify bounding boxes for the scene observations.

The algorithms are demonstrated on six different scenes (Sec. 7.2). The visual

properties, surface complexity and size of each scene is varied, which presented

unique challenges when obtaining observations using the different sensors. Some

scenes contain surfaces with uniform or repetitive features which proved difficult

to observe with the stereo camera. The reflectivity of surfaces in some scenes

reduced the number of reliable measurements obtained with the LiDAR sensor. The

varying complexity of the surface geometry provides a useful distinction between

the capabilities of SEE and SEE++ as scenes with self-occluding surfaces were

typically observed much more efficiently using SEE++. The difference in scene sizes

demonstrates the considerations necessary to obtain highly complete observations

at any scale and the ability of SEE and SEE++ to generalise with scene size.
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The qualitative pointcloud observations obtained for each scene with SEE and

SEE++, separately using the stereo camera and LiDAR sensor, are presented in the

corresponding subsections of Section 7.2 and discussed in Section 7.2.7. A quantita-

tive evaluation of the observation performance for SEE and SEE++ is presented in

Section 7.3. The overall outcomes of the experiments are discussed in Section 7.4.

The work presented in this chapter makes three key contributions:

1. Real world experiments demonstrating the observation capabilities of SEE

and SEE++ on several real world scenes with varying sizes and structural

complexities independently using either a stereo camera or LiDAR sensor.

2. Qualitative pointcloud results showing that both SEE and SEE++ were able

to obtain largely complete observations despite the presence of sensor noise.

3. Quantitative metrics of the observation performance for SEE and SEE++

demonstrating that the efficiency improvements of SEE++ enabled it to

observe all of the scenes using fewer views and with less travelling than SEE.

7.1 Sensor System

The scenes were observed using a handheld sensor ‘wand’ (Fig. 7.1). Measurements

were obtained using either the Intel RealSense D435 or the Velodyne VLP-16

attached to the wand. A Vicon system was used to track the pose of this sensor wand

relative to a known coordinate frame defined in the scene workspace. Observations

were obtained by moving the sensor wand to the poses of next best views selected

by SEE or SEE++ and capturing sensor measurements. A 3D viewer was used to

visualise the current pointcloud observation, the real-time pose of the sensor wand

and the chosen next best view pose. New measurements were obtained when the

tracked sensor pose was within a thresholded offset of the next best view pose.

7.1.1 Intel RealSense D435

The Intel RealSense D435 is a stereo camera that obtains depth measurements using

a stereo pair of infrared sensors. Unique features are identified in the images obtained

from each sensor and matching is performed between the two sets of features. Feature



7. Observing the Real World 136

Velodyne VLP-16

Intel RealSense D435

Figure 7.1: The sensor system used to observe the real world scenes. Observations
were obtained independently using either an Intel RealSense D435 or a Velodyne
VLP-16. The sensor poses were tracked using a Vicon motion capture system. Pose
estimation is performed by identifying the position and relative configuration of
reflective vicon markers in the images of 10 infrared cameras. The sensors and vicon
markers (not shown) were affixed to a metal ‘sensor wand’ in a known configuration.

matches are used in conjunction with the known separation between the sensors to

compute a depth measurement using triangulation. An infrared projector is used to

improve the estimated depth by projecting unique features onto scene surfaces, but

this is only effective at short distances. Depth measurements are combined with

colour pixels obtained from an RGB sensor to produce a coloured pointcloud.

Spatial and temporal filtering are applied to depth measurements obtained

using the RealSense in order to reduce sensor noise and eliminate erroneous points.

Spatial filtering is performed using a decimation filter provided with the RealSense

SDK. This obtains the median value for 2x2 pixel regions in the depth image to

smooth over erroneous measurements and effectively halves the sensor resolution.

The RealSense data were also filtered temporally to remove inconsistent mea-

surements between observations. The temporal filter evaluates the correspondence

between pointclouds using a similar method to the Iterative Closest Point (ICP)
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algorithm (Yang and Medioni 1992; Besl and McKay 1992). A one-to-one matching

is computed between points in subsequently obtained pointclouds, Pt and Pt+1. A

matching point in the Pt+1 pointcloud is found for a point in the Pt pointcloud by

evaluating unmatched points within a given filter distance, f . Points in the Pt+1

pointcloud that are not matched with a point in Pt are removed. Temporal filtering is

applied iteratively for a given number of subsequent sensor observations, n, in order

to obtain a pointcloud containing measurements consistent between all observations.

Sensor measurements were obtained using the RealSense with a resolution of wx =

848 px, wy = 480 px and a field-of-view of θx = 69.4°, θy = 42.5°. The spatial filtering

applied to the depth measurements reduced the effective resolution of the pointclouds

obtained by SEE and SEE++ to wx = 424 px, wy = 240 px. A filter distance of

f = 0.005 m was used for the temporal filtering of n = 30 subsequent pointclouds.

This represents 1 s of observations as the sensor framerate used was 30 Hz.

7.1.2 Velodyne VLP-16

The Velodyne VLP-16 is LiDAR sensor that obtains depth measurements based on

the time-of-flight of an infrared pulse emitted from the sensor and reflected back

from a scene surface. The time delay between emitting a pulse and receiving a

corresponding reflection is used to compute the distance to a scene surface and the

reflection intensity can be used to identify surface properties. The sensor contains a

rotating mechanism that allows it to obtain measurements with a 360° horizontal

field-of-view. This rotates at 10 Hz with a horizontal angular resolution of ≈ 0.25°

and obtains 16 measurements in a 30° vertical field-of-view from each position.

Measurements obtained using the Velodyne were filtered by restricting the sensor

field-of-view and applying temporal filtering. The horizontal field-of-view is centred

on the x-axis in the sensor coordinate frame, which points directly forwards on the

handheld sensor wand (Fig. 7.1). This field-of-view was restricted to 90° so that

the measurements obtained from rotational positions less than −45° or greater than

+45° were not included in the sets of measurements obtained by SEE and SEE++.

Temporal filtering was performed using the approach discussed in Section 7.1.1.
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The resulting field-of-view for Velodyne measurements obtained by SEE and

SEE++ was θx = 90°, θy = 30°. The effective resolution of the sensor within this

field-of-view was computed from its specifications as wx = 586 px, wy = 16 px. A

filter distance of f = 0.01 m was used for the temporal filtering of n = 10 subsequent

pointclouds. This represents 1 s of observations from a sensor rotating at 10 Hz.

7.1.3 Vicon System

A Vicon motion capture system was used to obtain pose estimates for the sensor

wand by identifying the position and relative configuration of reflective markers

affixed to the wand. Ten cameras placed around the Vicon workspace were used

to identify the marker positions from infrared images based on the intensity of

reflected light. A coordinate frame is defined for the sensor wand based on the

unique configuration of attached markers. The relative transformations between this

frame and the sensor coordinate frames were obtained using a manual calibration.

7.2 Scene Observations

The real world observation performance of SEE and SEE++ is demonstrated on

six different scenes. Observations of each scene were obtained with each approach

independently using either the Intel RealSense D435 or the Velodyne VLP-16. The

structural and visual properties of each scene present different challenges when

obtaining observations with the two sensing modalities.

The single box (Sec. 7.2.1), single tower (Sec. 7.2.2) and double tower (Sec. 7.2.3)

scenes contain foam boxes in various configurations. The small bookshelf scene

(Sec. 7.2.4) consists of a bookshelf with two shelves full of books. The rhinoceros

pelvis (Sec. 7.2.5) and crocodile skull (Sec. 7.2.6) scenes contain specimens loaned

from the Oxford University Museum of Natural History.

The observations of each scene obtained using SEE and SEE++ are evaluated by

considering qualitative pointcloud results and quantitative metrics of the observation

performance. Figures are presented in the following subsections showing photographs

of each scene and representative views of the pointcloud results. A complete set
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photographs and views are included in Appendix A. A summative assessment of

the qualitative pointcloud results is presented in Section 7.2.7.

7.2.1 Single Box

The single box scene contains a foam box with dimensions 0.6x0.6x0.6m. The box

sides consist of coloured foam panels marked with unique numbers in reflective

black duct tape. The bounding box of the scene is sufficiently large to encompass a

region of the floor area around the box (Fig. 7.2; Fig. A.1). The surface geometry

of the scene is simple and contains no major occlusions but certain visual properties,

such as the reflectivity of the duct tape and the repetitive texture of the box edges,

often prevented reliable measurements of these surface from being captured.

7.2.1.1 RealSense

The RealSense observations were obtained using a target measurement density

of 500000 points per m3 and a resolution of 0.05 m. The qualitative pointcloud

results (Fig. 7.3; Fig. A.2 and Fig. A.3) show that both SEE and SEE++ obtained

largely complete observations except for in the numerical markings and along the

box edges as accurate measurements of these features could not be obtained from

many views. The numerical markings frequently returned noisy measurements due

to the reflective black surface of the duct tape. Due to the uncertainty of these

points they were often removed by the temporal filtering.

When the box edges were observed from views orthogonal to the box sides the

stepwise difference in depth between the boundary of the box surface and the scene

background produced significant measurement noise. Accurate measurements of the

edges could often only be obtained from views with visibility of both sides of the

surface discontinuity. The results show that SEE was more likely to obtain accurate

measurements of the box edges than SEE++. This can be attributed to the greater

number of adjusted views captured by SEE as these were less likely to be orientated

orthogonally to the box sides and provided better visibility of the box edges.
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Figure 7.2: Photographs of the single box scene. It contains a 0.6x0.6x0.6m foam
box with a unique numerical marking on each side in reflective black duct tape.

(a) SEE (b) SEE++

Figure 7.3: The RGB coloured pointcloud results obtained from observations of
the single box scene using the Intel RealSense D435 with SEE and SEE++.
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(a) SEE (b) SEE++

Figure 7.4: The LiDAR intensity coloured pointcloud results obtained from
observations of the single box using the Velodyne VLP-16 with SEE and SEE++.

Sensors RealSense Velodyne

Resolution (m), r 0.05 0.1
Target Density, ρ 500000 20000

Algorithms SEE SEE++ SEE SEE++

Number of Views 81 68 160 96
Travel Distance (m) 33 25 86 33
Computation Time (s) 118 144 26 65

Table 7.1: Top: the resolution radius, r, and target measurement density, ρ, used
for observations of the single box scene with the Intel RealSense D435 and the
Velodyne VLP-16. Bottom: the number of views, travel distance and computation
time required to obtain scene observations with SEE and SEE+ using each sensor.
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The quantitative performance metrics (Table 7.1) demonstrate that SEE++

obtained an observation using 16% fewer views and a 24% shorter travel distance

than SEE while requiring a 22% increase in computation time. As this scene

contains no major occlusions the improved performance of SEE++ can primarily

be attributed to the consideration of scene visibility when selecting next best views.

The increased computational cost is incurred by maintaining the covisibility graph.

7.2.1.2 Velodyne

The Velodyne observations were obtained using a target measurement density

of 20000 points per m3 and a resolution of 0.1 m. The qualitative pointcloud

results (Fig. 7.4; Fig. A.4 and Fig. A.5) show that both SEE and SEE++ obtained

largely complete observations except for on the numerical markings and in the

case of SEE++ the floor area on one side of the box. It was often not possible for

the Velodyne to capture reliable measurements from the black duct tape due to

its reflectivity. Accurate measurements could often only be obtained from views

orthogonal to the box sides as this relative orientation reduced the likelihood

of adverse reflections. The distinct visibility of the numerical markings in the

SEE++ pointcloud result demonstrate that it was able to obtain more accurate

measurements from the duct tape than SEE by obtaining a greater proportion of

orthogonal views. The absence of measurements in the SEE++ pointcloud from

the floor area on one side of the box indicates that it was able to obtain a sufficient

measurement density without observing that region. This is likely possible due to

the relatively small width of the region in comparison to the resolution radius.

The quantitative performance metrics (Table 7.1) demonstrate that SEE++

obtained an observation using 40% fewer views and a 62% shorter travel distance than

SEE. The computation time used by SEE++ was 2.5 times greater than required

by SEE. This shows that SEE++ was able to achieve a significant improvement

in observation performance by considering scene visibility at the expense of an

increased computational cost. The relative increase in computation time is greater

than was incurred when observing the scene with the RealSense. This is because
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the sparse measurements obtained by the Velodyne were processed in a shorter

computation time but the cost of updating the visibility graph was similar to the

RealSense observation as approximately the same number of views were represented.

7.2.2 Single Tower

The single tower scene contains two foam boxes in a stacked configuration. The top

box is rotated by 45° around the z-axis relative to bottom box. The scene bounding

box is aligned with the rotation of the top box such that a square region of floor

area, offset from the bottom box by 45°, is encompassed (Fig. 7.5; Fig. A.6). The

rotational offset between the boxes creates small regions of self-occlusion from the

lower corners of the top box but the surface geometry remains fairly simple.

7.2.2.1 RealSense

The RealSense observations were obtained using a target measurement density of

500000 points per m3 and a resolution of 0.05 m. The qualitative pointcloud results

(Fig. 7.6; Fig. A.7 and Fig. A.8) for both SEE and SEE++ are largely complete

with the exceptions of gaps that can be observed along the box edges and in the

numerical markings. The SEE++ pointcloud is shown to contain more significant

gaps along the edges than are present in the SEE pointcloud. As discussed for the

single box scene this can be attributed to the less frequent use of view adjustment

by SEE++, which reduces the number of views with sufficient visibility of the box

edges to obtain reliable measurements. The lower level of measurement noise in the

SEE++ pointcloud is likely due to the use of more orthogonal views. The numerical

markings are also marginally more complete than in the SEE pointcloud.

The quantitative performance metrics (Table 7.2) demonstrate that SEE++

obtained an observation using 34% fewer views and a 43% shorter travel distance than

SEE at the expense of incurring a 15% increase in computation time. While the scene

contains some small self-occlusions, the majority of this performance improvement

and increased computational cost can be attributed to the consideration of scene

visibility when selecting next best views with SEE++.
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Figure 7.5: Photographs of the single tower scene. It contains two foam boxes in
a stacked configuration with a 45° rotational offset between the boxes.

(a) SEE (b) SEE++

Figure 7.6: The RGB coloured pointcloud results obtained from observations of
the single tower scene using the Intel RealSense D435 with SEE and SEE++.
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(a) SEE (b) SEE++

Figure 7.7: The LiDAR intensity coloured pointcloud results obtained from
observations of the single tower using the Velodyne VLP-16 with SEE and SEE++.

Sensors RealSense Velodyne

Resolution (m), r 0.05 0.1
Target Density, ρ 500000 20000

Algorithms SEE SEE++ SEE SEE++

Number of Views 207 136 155 104
Travel Distance (m) 89 51 54 47
Computation Time (s) 261 301 32 58

Table 7.2: Top: the resolution radius, r, and target measurement density, ρ, used
for observations of the single tower scene with the Intel RealSense D435 and the
Velodyne VLP-16. Bottom: the number of views, travel distance and computation
time required to obtain scene observations with SEE and SEE+ using each sensor.
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7.2.2.2 Velodyne

The Velodyne observations were obtained using a target measurement density of

20000 points per m3 and a resolution of 0.1 m. The qualitative pointcloud results

(Fig. 7.7; Fig. A.9 and Fig. A.10) show that both SEE and SEE++ were able to

obtain highly complete observations of the box structure and floor region without

significant measurement noise. However, the measurements obtained from the

reflective numerical markings were often noisy and therefore removed by temporal

filtering. The greater completeness of the SEE++ pointcloud demonstrates that it

was more successful at obtaining accurate measurements of the numerical markings

as it utilised fewer view adjustments and obtained more orthogonal views.

The quantitative performance metrics (Table 7.2) demonstrate that SEE++

obtained an observation using 33% fewer views than SEE and a 13% shorter travel

distance than SEE. The computation time used by SEE++ was 1.8 times greater

than required by SEE. These results demonstrate a lower reduction in the travel

distance for SEE++ over SEE than for the single box scene. This is because SEE

was able to observe this scene while travelling less than for the single box scene but

SEE++ travelled farther to observe this scene than the single box scene.

7.2.3 Double Towers

The double towers scene contains two sets of stacked boxes separated by a distance

of less than 1 m (Fig. 7.8; Fig. A.11). The stacked boxes have offset rotations as in

the single tower scene (Sec. 7.2.2). The separation distance between the two box

towers produces a scene with several occluding surfaces. The view distance used

to obtain observations with either sensor is greater than this separation distance

and as such is not possible to observe the inward facing side of either top box

from a view orthogonal to the surface.

7.2.3.1 RealSense

The RealSense observations were obtained using a target measurement density of

100000 points per m3 and a resolution of 0.1 m. The desired measurement density
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Figure 7.8: A photograph of the double towers scene. It contains two stacks of
rotationally offset foam boxes separated by a distance of less than 1 m.

(a) SEE (b) SEE++

Figure 7.9: The RGB coloured pointcloud results obtained from observations of
the double towers scene using the Intel RealSense D435 with SEE and SEE++.
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(a) SEE (b) SEE++

Figure 7.10: The LiDAR intensity coloured pointcloud results obtained from
observations of the double towers using the Velodyne VLP-16 with SEE/SEE++.

Sensors RealSense Velodyne

Resolution (m), r 0.1 0.1
Target Density, ρ 100000 20000

Algorithms SEE SEE++ SEE SEE++

Number of Views 125 93 213 148
Travel Distance (m) 67 37 110 54
Computation Time (s) 415 562 60 163

Table 7.3: Top: the resolution radius, r, and target measurement density, ρ, used
for observations of the double towers scene with the Intel RealSense D435 and the
Velodyne VLP-16. Bottom: the number of views, travel distance and computation
time required to obtain scene observations with SEE and SEE+ using each sensor.
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was decreased and a larger resolution was used in order to handle an increase in

measurement noise. A greater number of noisy measurements were obtained as the

larger scene scale increased the distance between scene surfaces and the sensor. The

large floor area visible in the scene also produced an increase in measurement noise.

The qualitative pointcloud results (Fig. 7.9; Fig. A.12 and Fig. A.13) obtained

by SEE and SEE++ show this increase in measurement noise and the larger

gaps in the observations resulting from the decreased measurement density and

increased resolution radius. The level of noise is marginally greater in the SEE++

pointcloud. This is likely the result of capturing measurements from views proposed

by the optimisation strategy that provided visibility of the inward facing box

sides but increased the measurement noise due to the angle at which the surfaces

were observed.

The quantitative performance metrics (Table 7.3) demonstrate than SEE++

obtained an observation using 26% fewer views and a 45% shorter travel distance

than SEE while requiring a 35% increase in computation time. This illustrates

the significant improvement in observation performance that can be achieved when

observing scenes containing major occlusions by using proactive occlusion handling

and considering scene visibility. The cost of this improvement is an increase in

computation time that in this case is primarily incurred by using the optimisation

strategy to propose unoccluded views.

7.2.3.2 Velodyne

The Velodyne observations were obtained using a target measurement density of

20000 points per m3 and a resolution of 0.1 m. The Velodyne measurement noise

remained consistent with the smaller scenes as it does not vary significantly with

distance and therefore the same parameters were used. The qualitative pointcloud

results (Fig. 7.10; Fig. A.14 and Fig. A.15) show that both SEE and SEE++

obtained largely complete and accurate observations. As with the smaller scenes,

reliable measurements could often not be obtained from the numerical markings.

SEE++ captured sparser measurements of some scene regions than SEE. This
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indicates that reliable measurements of these surfaces could not be obtained from

the views captured by SEE++. This is likely the result of obtaining views proposed

by the optimisation strategy that enabled visibility but observed the surfaces from

angles that increased the measurement noise.

The quantitative performance metrics (Table 7.3) demonstrate that SEE++

obtained an observation using 31% fewer views and a 51% shorter travel distance

than SEE. SEE++ required a 2.7 times greater computation time than SEE to

observe the scene. This illustrates that a significant improvement in observation

performance was achieved by proactively handling occlusions and considering scene

visibility when proposing and selecting next best views. The greater efficiency of

observations was attained at the expense of an increased computational cost.

7.2.4 Small Bookshelf

The small bookshelf scene contains a bookshelf with two shelves full of books

(Fig. 7.11; Fig. A.16). The surface geometry of the bookshelf itself is relatively

simple, but the gap between each row of books and the top of their shelf produced

a configuration of occluded surfaces that were challenging to observe using either

sensor. Measurements could be obtained from the top of the books and the back

of the shelves but this was only possible from certain view orientations.

7.2.4.1 RealSense

The RealSense observations were obtained using a target measurement density of

250000 points per m3 and a resolution of 0.05 m. The desired measurement density

was decreased to account for the sparsity of measurements obtainable from the

gap between the books and the top of the shelves. The qualitative pointcloud

results (Fig. 7.12; Fig. A.17 and Fig. A.18) show that both SEE and SEE++ were

able to obtain largely complete observations despite the presence of significant

sensor noise, which produced multiple offset surface measurements when observing

the floor and outer sides of the bookshelf.
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Figure 7.11: Photographs of the small bookshelf scene. It consists of two shelves
full of books. The photographs show two angled side views of the bookshelf.

(a) SEE (b) SEE++

Figure 7.12: The RGB coloured pointcloud results obtained from observations of
the small bookshelf scene using the Intel RealSense D435 with SEE and SEE++.
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(a) SEE (b) SEE++

Figure 7.13: The y-coordinate coloured pointcloud results obtained from observa-
tions of the small bookshelf using the Velodyne VLP-16 with SEE and SEE++.

Sensors RealSense Velodyne

Resolution (m), r 0.05 0.1
Target Density, ρ 250000 20000

Algorithms SEE SEE++ SEE SEE++

Number of Views 177 76 178 138
Travel Distance (m) 120 28 105 80
Computation Time (s) 242 287 30 59

Table 7.4: Top: the resolution radius, r, and target measurement density, ρ, used
for observations of the small bookshelf scene with the Intel RealSense D435 and the
Velodyne VLP-16. Bottom: the number of views, travel distance and computation
time required to obtain scene observations with SEE and SEE+ using each sensor.
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The quantitative performance metrics (Table 7.4) demonstrate that SEE++

observed the scene using 57% fewer views and a 77% shorter travel distance than

SEE while requiring a 19% increase in computation time. This illustrates the

importance of utilising proactive occlusion handling when observing scenes that

contain major self-occlusions. It shows that by doing so the improvement in

observation performance achieved, in terms of a reduction in the number of views

and travel distance required, can be significant enough for a scene to be observed

without incurring a correspondingly large increase in computational cost.

7.2.4.2 Velodyne

The Velodyne observations were obtained using a target measurement density

of 20000 points per m3 and a resolution of 0.1 m. The qualitative pointcloud

results (Fig. 7.13; Fig. A.19 and Fig. A.20) demonstrate that SEE++ was able to

obtain more accurate measurements from the gaps above the books by considering

the occluding surfaces when proposing views. This is shown by a more clearly

defined difference in colour for the gaps between the rows of books and the backs

of the shelves.

The quantitative performance metrics (Table 7.4) demonstrate that SEE++

observed the scene using 22% fewer views and a 24% shorter travel distance than SEE.

The computation time used by SEE++ was two times greater than required by SEE.

This is a less significant improvement in observation performance than was achieved

for the RealSense observations. It can be attributed to the increased sparsity of

measurements obtained using the Velodyne as this meant it was necessary to capture

more views of the bookshelf before its structure could be observed with sufficient

fidelity to identify the configuration of self-occlusions between the books and shelves.

7.2.5 Rhinoceros Pelvis

The rhinoceros pelvis scene (Fig. 7.14; Fig. A.21) contains the pelvis of a Javan

Rhinoceros (rhinoceros sondaicus) specimen loaned from the Oxford University

Museum of Natural History (OUMNH 19164). The detail of visual features and
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surface texture on the pelvis in this scene is significantly greater than for the foam

box and bookshelf scenes. The relatively complex geometry of the pelvis produces

many self-occlusions but also contains large surface areas with continuous geometry.

This made some surfaces difficult to observe while also enabling great increases

in scene coverage from certain views. The absence of reflective surfaces and the

presence of unique visual features reduced the measurement noise for both sensors.

7.2.5.1 RealSense

The RealSense observations were obtained using a target measurement density of

500000 points per m3 and a resolution of 0.05 m. The qualitative pointcloud results

(Fig. 7.15; Fig. A.22 and Fig. A.23) show that both SEE and SEE++ were able

to obtain highly complete observations. SEE obtained sparser measurements than

SEE++ from some scene surfaces (e.g., Fig. 7.15c). This is likely because SEE++

was able to capture more reliable measurements of these surfaces from views with

a more orthogonal orientation to the local surface geometry.

The quantitative performance metrics (Table 7.5) demonstrate that SEE++

observed the scene using 15% fewer views and a 17% shorter travel distance than

SEE. SEE++ incurred a computation time 2.7 times greater than SEE in order to

attain this improvement in observation performance. This is a greater proportional

increase in computational cost than occurred for the RealSense observations of the

larger scenes. There is a greater increase in computation time as SEE obtains an

observation of the scene using fewer views than were required for the larger scale

scenes while SEE++ does not achieve an equivalent reduction in the number of

views obtained and incurs an increased computational cost due to a more frequent

use of view optimisation. This can be attributed to the complex surface geometry.

7.2.5.2 Velodyne

The Velodyne observations were obtained using a target measurement density of

20000 points per m3 and a resolution of 0.05 m. It was possible to use a smaller

resolution radius for this scene due to the reduction in measurement noise. The

qualitative pointcloud results (Fig. 7.16; Fig. A.24 and Fig. A.25) show that SEE
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Figure 7.14: Photographs of the rhinoceros pelvis scene. It contains the pelvis
of a Javan rhinoceros (rhinoceros sondaicus) specimen that was loaned from the
Oxford University Museum of Natural History (OUMNH 19164).

(a) SEE (front) (b) SEE++ (front)

(c) SEE (back) (d) SEE++ (back)

Figure 7.15: The RGB coloured pointcloud results obtained from observations of
the rhinoceros pelvis scene using the Intel RealSense D435 with SEE and SEE++.
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(a) SEE (front) (b) SEE++ (front)

(c) SEE (back) (d) SEE++ (back)

Figure 7.16: The y-coordinate coloured pointcloud results obtained from observa-
tions of the rhinoceros pelvis using the Velodyne VLP-16 with SEE and SEE++.

Sensors RealSense Velodyne

Resolution (m), r 0.05 0.05
Target Density, ρ 500000 20000

Algorithms SEE SEE++ SEE SEE++

Number of Views 68 58 39 27
Travel Distance (m) 24 20 19 15
Computation Time (s) 76 208 2 3

Table 7.5: Top: the resolution radius, r, and target measurement density, ρ, used
for observations of the rhinoceros pelvis scene with the Intel RealSense D435 and the
Velodyne VLP-16. Bottom: the number of views, travel distance and computation
time required to obtain scene observations with SEE and SEE+ using each sensor.
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obtained denser measurements of the illium (Fig. 7.16a) while SEE++ captured

more measurements from the pubis and ischium (Fig. 7.16d). SEE++ likely required

fewer views to obtain a sufficient measurement density on the large and relatively

continuous surface of the illium as it considered the visibility of frontier points

when selecting next best views.

The quantitative performance metrics demonstrate that SEE++ observed the

scene using 31% fewer views and a 21% shorter travel distance than SEE. The

computation time used by SEE++ was 1.5 times greater than required by SEE.

Both SEE and SEE++ were able to observe this scene using fewer views, shorter

travel distances and a lower computation time than the other scenes due to its

smaller scale and the use of a smaller resolution radius.

7.2.6 Crocodile Skull

The crocodile skull scene (Fig. 7.17; Fig. A.26) contains the skull of a saltwater

crocodile (crocodylus porosus) specimen that was loaned from the Oxford University

Museum of Natural History (OUMNH 19149). The skull exhibits highly detailed

visual features and texture. Its surface geometry is incredibly complex and contains

numerous interior surfaces that are only partially visible when the jaw is closed.

The desire to capture measurements from the interior surfaces of the crocodile skull

(e.g., the jaw joints) motivated the decision to prop open the jaw with a tripod

when observing the scene. This enabled the visibility of previously hidden surfaces

without significantly reducing the complexity of self-occlusions in the scene.

7.2.6.1 RealSense

The RealSense observations were obtained using a target measurement density of

1000000 points per m3 and a resolution of 0.01 m. The measurement density was

increased and resolution radius was decreased with the aim of attaining highest

observation quality obtainable with the RealSense. The qualitative pointcloud

results (Fig. 7.18; Fig. A.27 and Fig. A.28) show that SEE++ was able to observe

the scene structure with higher fidelity than SEE in many places (e.g., the nostril;
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Figure 7.17: Photographs of the crocodile skull scene. It contains the skull of a
saltwater crocodile (crocodylus porosus) specimen that was loaned from the Oxford
University Museum of Natural History (OUMNH 19149).

(a) SEE (side) (b) SEE++ (side)

(c) SEE (top) (d) SEE++ (top)

Figure 7.18: The RGB coloured pointcloud results obtained from observations of
the crocodile skull scene using the Intel RealSense D435 with SEE and SEE++.
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(a) SEE (side) (b) SEE++ (side)

(c) SEE (top) (d) SEE++ (top)

Figure 7.19: The y- and z-coordinate coloured pointcloud results obtained from
observations of the crocodile skull using the Velodyne VLP-16 with SEE/SEE++.

Sensors RealSense Velodyne

Resolution (m), r 0.01 0.05
Target Density, ρ 1000000 20000

Algorithms SEE SEE++ SEE SEE++

Number of Views 226 134 48 34
Travel Distance (m) 85 46 29 23
Computation Time (s) 55 158 1 4

Table 7.6: Top: the resolution radius, r, and target measurement density, ρ, used
for observations of the crocodile skull scene with the Intel RealSense D435 and the
Velodyne VLP-16. Bottom: the number of views, travel distance and computation
time required to obtain scene observations with SEE and SEE+ using each sensor.
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Fig. 7.18d) but the measurements of details in the scene structure were often noisy

for both approaches and certain surfaces could not be successfully observed.

SEE++ could not successfully observe the lefthand jaw joint (Fig. 7.18b) as the

RealSense was unable to capture reliable measurements from this surface despite

it being visible from multiple views. SEE was able to successfully observe this

region from a view with an orientation orthogonal to the local surface geometry

but none of the views captured by SEE++ of the region were orthogonal to the

surface and this evidently precluded the capture of reliable measurements. The

absence of an orthogonal view for SEE++ is likely a byproduct of decisions made

by the optimisation strategy for identifying unoccluded views (e.g., as a result of

self-occlusions between the jaw joint and the ground plane) and the consideration of

scene visibility prioritising views that could also observe other regions of the scene

while only obtaining measurements of the jaw joint from more acute angles.

The quantitative performance metrics (Table 7.6) demonstrate that SEE++

observed the scene using 41% fewer views and a 46% shorter travel distance than

SEE. SEE++ required a 2.9 times greater computation time than SEE to obtain

an observation. This illustrates the importance of proactively handling occlusions

and considering scene visibility for enabling the efficient observation of a scene with

complex surface geometry using a high measurement density. The relative increase

in computation time is significant as the decreased resolution radius reduces the

cost of updating the density representation for both approaches but for SEE++ this

is offset by the cost of updating the covisibility graph and using the optimisation

strategy to propose unoccluded views.

7.2.6.2 Velodyne

The Velodyne observations were obtained using a target measurement density of

20000 points per m3 and a resolution of 0.05 m. As for the Rhinoceros Pelvis scene it

was possible to use a smaller resolution radius due to the reduction in measurement

noise. The qualitative pointcloud results (Fig. 7.19; Fig. A.29 and Fig. A.30) show

that both SEE and SEE++ obtained similarly complete observations.
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The quantitative performance metrics (Table 7.6) demonstrate that SEE++

observed the scene using 29% fewer views and a 21% shorter travel distance

than SEE. The computation time used by SEE++ was four times greater than

required by SEE. This improvement in observation performance illustrates that it

is possible to achieve reductions in both the number of views and travel distance

required to observe a small scene with complex surface geometry provided regions

of visibility exist between self-occluding surfaces which allow them to be observed

from unoccluded views that are close to the current sensor position.

7.2.7 Summary

The qualitative pointcloud results presented in the preceding subsections demon-

strate that both SEE and SEE++ were able to capture largely complete observations

of scenes with varying sizes and structural complexities independently using either

an Intel RealSense D435 or a Velodyne VLP-16. These observations were successfully

obtained despite the presence of measurement noise for both sensors. The magnitude

of noise was particularly significant for the RealSense and varied with the texture

of surfaces being observed, the distance of the sensor from scene surfaces and the

orientations of views relative to the observed surface geometry. The noise associated

with the Velodyne measurements did not vary appreciably with the distance and

angle of views except for the measurements obtained from reflective surfaces (e.g.,

the numerical markings on the boxes), which exhibited significant sensor noise.

The filtering that was applied to measurements reduced the level of noise but

erroneous points that were temporally consistent remained (e.g., noisy points in

the floor region of the double towers scene; Fig. 7.9). In some cases the filtering

resulted in certain surfaces not being observed when reliable measurements could

not be obtained (e.g., the jaw joint in the crocodile skull scene; Fig. 7.18b).

The parameters used by SEE and SEE++ to observe the scenes with each

sensor were chosen to robustly handle the magnitude of measurement noise. The

resolution radius was set to be sufficiently large to account for the variance of noisy

measurements. It was increased with the scene size for the RealSense observations
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(i.e., from 0.05 m for the single box and single tower scenes to 0.1 m for the double

towers scene) as the magnitude of measurement noise was greater for surfaces farther

from the sensor. A larger resolution was used for the Velodyne observations of the

box scenes than the specimen scenes (i.e., 0.1 m vs. 0.05 m) due to the presence of

the highly noisy measurements obtained from the reflective numerical markings.

The target measurement density was chosen to be large enough that frontier

points could be reliably identified along observation boundaries while accounting for

the sensor resolution and magnitude of measurement noise. A larger target density

was used for the RealSense observations than the Velodyne observations (e.g., 500000

vs. 20000 for the single box scene) due to the greater sensor resolution. It was

necessary to decrease the target density when observing scenes using the RealSense

that exhibited greater noise to try and prevent noisy points, which were offset from

true surfaces, from being erroneously identified as frontiers (e.g., reducing the target

density from 500000 for the single tower scene to 100000 for the double towers scene).

The pointcloud results obtained by SEE and SEE++ using the RealSense

demonstrate that SEE was often more successful at obtaining reliable measurements

from the edges of scene surfaces (e.g., the box edges in the single box scene; Fig. 7.3)

as these measurements could typically only be captured from adjusted views with

visibility of the surfaces on both sides of an edge. The views proposed and selected

using SEE++ by considering occlusions and scene visibility meant that fewer view

adjustments were required. These views were more likely to have an orientation

from which the observation of a continuous surface could be improved rather than

one from which both sides of a surface discontinuity could be reliably observed.

The pointcloud results obtained for observations of the box scenes using the

Velodyne demonstrate that SEE++ was often more successful at obtaining reliable

measurements of the reflective numerical markings than SEE (e.g., for the single

tower scene; Fig. 7.7). This can be attributed to the proposal and selection of more

views orthogonal to the box sides using SEE++ than those obtained by SEE.

These differences illustrate that when capturing observations of real world

scenes the magnitude of sensor noise associated with the measurements obtained
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varies significantly with the observed surface texture and the distance and relative

orientation of views to the scene surfaces being observed. While in many cases the

most reliable measurements are obtained from views with orthogonal orientations

to visible surfaces it is clear that this does not hold true for all sensors and surface

structures (e.g., the box edges). It may be possible to account for the variation in

sensor noise for different sensors when filtering measurements and processing newly

observed points with SEE and SEE++ by computing a model of measurement noise

for each sensor, but that was beyond the scope of these real world experiments.

The presented results show the pointcloud observations of the scenes that were

obtained independently using either an Intel RealSense D435 or a Velodyne VLP-16.

These pointclouds provide the most veracious qualitative representation of the scene

coverage attained by SEE and SEE++. However, to utilise the observations for other

purposes it would typically be necessary to compute a surface mesh representation

from the pointclouds (e.g., a Poisson reconstruction; Kazhdan et al. 2006).

7.3 Evaluation

The view distance used for the observations was computed with the method presented

in Section 6.1.2. SEE++ used an occlusion search distance of ψ = 1 m and a view

visibility update limit of τ = 100 views. The performance of SEE and SEE++ is

evaluated using the metrics defined in Section 3.3.4. Ground truth observations of

the scenes could not be obtained so the surface coverage for these experiments is

computed relative to the final pointcloud result obtained from an observation using

a registration distance of rd = 0.005 m. This is used to quantify the improvement in

scene coverage achieved per view, unit of travel distance or unit of computation time.

A quantitative evaluation of the RealSense observations (Fig. 7.20 and Fig. 7.21)

demonstrates that SEE++ was able to observe all of the scenes using fewer views

and shorter travel distances than SEE while requiring a greater computational

time. The number of views, travel distance and computation time required to

obtain an observation typically increases with the scene size when the same target

measurement density and resolution radius are used. The results demonstrate that
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Single Box Single Tower Double Towers

Figure 7.20: A quantitative evaluation of SEE and SEE++ for observations of the
single box, single tower and double towers scenes using the Intel RealSense D435.
The graphs present the relative surface coverage achieved by SEE and SEE++ with,
from top to bottom, the number of views, computation time and travel distance.
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Small Bookshelf Rhinoceros Pelvis Crocodile Skull

Figure 7.21: A quantitative evaluation of SEE and SEE++ for observations of the
small bookshelf, rhinoceros pelvis and crocodile skull using the Intel RealSense D435.
The graphs present the relative surface coverage achieved by SEE and SEE++ with,
from top to bottom, the number of views, computation time and travel distance.
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Single Box Single Tower Double Towers

Figure 7.22: A quantitative evaluation of SEE and SEE++ for observations of
the single box, single tower and double towers scenes using the Velodyne VLP-16.
The graphs present the relative surface coverage achieved by SEE and SEE++ with,
from top to bottom, the number of views, computation time and travel distance.
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Small Bookshelf Rhinoceros Pelvis Crocodile Skull

Figure 7.23: A quantitative evaluation of SEE and SEE++ for observations of the
small bookshelf, rhinoceros pelvis and crocodile skull using the Velodyne VLP-16.
The graphs present the relative surface coverage achieved by SEE and SEE++ with,
from top to bottom, the number of views, computation time and travel distance.
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the computational cost scales significantly better when the same parameters can be

used to observe a larger scene (e.g., for the single box and the single tower scenes) as

increasing the resolution radius means that a greater computational cost is incurred

when updating the density representation (e.g., for the double towers scene).

The improved efficiency of SEE++ is evidenced by the relatively consistent

and significant increases in surface coverage obtained from each view captured and

per unit of distance travelled. This is illustrated in contrast to the improvements

in surface coverage obtained by SEE which are nonexistent for certain sequences

of views. These views can be identified in the graphs by horizontal segments in

the plots. This typically occurs when attempting to observe a frontier point that

is the product of sensor noise and is offset from a real surface which has already

been fully observed. The effect is more prevalent for the box scenes due to their

discontinuous surface geometry. When one side of a box has been fully observed the

scene coverage will not be improved until a view is obtained of a partially observed

side. The observation performance of SEE++ is less affected by this occurrence

as when a frontier point is not successfully observed it can chosen an alternative

view rather than applying incremental view adjustments that will likely also be

unsuccessful at observing a frontier point that is the product of sensor noise.

A quantitative evaluation of the Velodyne observations (Fig. 7.22 and Fig. 7.23)

demonstrates that SEE++ was able to observe all of the scenes using fewer views

and shorter travel distances than SEE while requiring a greater computational time.

The result graphs show that in most cases both SEE and SEE++ obtained relatively

consistent improvements in surface coverage per view and unit of travel distance.

However, the presence of horizontal segments in the plots for both approaches

illustrate that they obtained some sequences of unsuccessful views which provided

no improvements in surface coverage. This is particularly evident in the SEE plot

on the number of views graph for the single tower scene as it shows three distinct

sequences of unsuccessful views. This plot illustrates that the more frequent use of

incremental view adjustments by SEE, while sometimes beneficial (e.g., for observing

the box edges), can incur a significant increase in the number of views obtained.
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7.4 Discussion

The real world experiments presented in this chapter demonstrate that both SEE

and SEE++ were able to obtain largely complete observations of real world scenes

with varying size and complexity. Experiments were performed using both a stereo

camera and LiDAR sensor to demonstrate the capability of SEE and SEE++

to generalise between different sensing modalities. The qualitative pointcloud

results show that largely complete observations were successfully obtained despite

the presence of measurement noise. A quantitative evaluation of the observation

performance of SEE and SEE++ evidences the improved efficiency of SEE++ as

it consistently obtained scene observations using fewer views and shorter travel

distances than SEE at the expense of incurring a greater computational cost.

The key challenges addressed when performing these experiments were obtaining

reliable estimates of the sensor wand pose and accounting for the measurement noise

produced by each sensor. The problem of pose estimation was solved by using a Vicon

system to define a known coordinate frame for the scenes and provide robust tracking

of the sensor wand. Measurement noise was reduced for both sensors by applying

filtering to the point measurements before processing a pointcloud observation. SEE

and SEE++ were able to successfully obtain largely complete scene observations

despite the noise associated with the measurements captured from some surfaces.

In summary, the work presented in this chapter makes three key contributions:

1. Real world experiments demonstrating the observation capabilities of SEE

and SEE++ on several real world scenes with varying sizes and structural

complexities independently using either a stereo camera or LiDAR sensor.

2. Qualitative pointcloud results showing that both SEE and SEE++ were able

to obtain largely complete observations despite the presence of sensor noise.

3. Quantitative metrics of the observation performance for SEE and SEE++

demonstrating that the efficiency improvements of SEE++ enabled it to

observe all of the scenes using fewer views and with less travelling than SEE.



8
Conclusion

The ability to capture high-quality scene observations using 3D sensors is crucial

for the analysis and imitation of real world structures in virtual environments.

Applications range from scanning small household objects using consumer products

to surveying large-scale outdoor scenes with industrial inspection systems (i.e., from

bunnies to buildings). These observations provide greater utility if they capture a

realistic representation of the real world that is both accurate and complete.

Observation accuracy is largely determined by the capabilities of the sensor used

to obtain 3D measurements. The completeness of an observation is typically defined

by considering the coverage of measurements obtained over visible scene surfaces.

The most significant factor in determining the completeness of an observation is

the selection of views from which measurements of a scene are obtained. Selecting

the ‘next’ view of a scene to obtain that will provide the ‘best’ improvement in a

scene observation is known as the Next Best View (NBV) planning problem.

This thesis presents work on NBV planning using a novel unstructured density

representation. In contrast to existing literature on the NBV problem (Ch. 2), which

typically utilises structured volumetric or surface representations, this representation

does not impose an external structure on sensor measurements. Observed points

are used to directly represent information on the structure of a scene rather than

being aggregated into voxels (i.e., for volumetric representations) or a triangulated

170
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mesh (i.e., for surface representations). The fidelity of scene knowledge encoded

by this representation is not limited by the resolution of an external structure

and it is not necessary to impose any assumptions about the scene geometry on

the observation. Potential next best views are proposed and selected by directly

considering information on the scene structure that is encoded in observed points

rather than being sampled a priori without accounting for the scene geometry.

Views are obtained until a given measurement density is attained for all observable

surfaces rather than terminating an observation after a fixed number of views.

The Surface Edge Explorer (SEE) is a novel NBV planning approach that

utilises this unstructured density representation (Ch. 3). Observations are obtained

by capturing measurements with a given minimum density from all observable

scene surfaces. Observed points are classified based on the number of neighbouring

measurements within a given resolution radius to identify a frontier between fully

and partially observed scene regions. Views are proposed to extend the coverage of

a scene observation by estimating the local surface geometry around frontier points.

Next best views are selected from the set of proposed views to improve the scene

observation while moving short distances. When an improvement in the surface

coverage around a frontier point is not attained, its associated view is adjusted by

considering newly observed points. An observation is considered complete when the

target measurement density has been attained for all observable scene surfaces.

The work on SEE discussed in this thesis was first presented at the 2017

Joint Industry and Robotics CDTs Symposium and extended at the 2018 IEEE

International Conference on Robotics and Automation (App. B):

Rowan Border, Jonathan D. Gammell, and Paul Newman (2017). “Infer-
ring Surface Geometry from Point Clouds for Next Best View Planning”.
In: Joint Industry and Robotics CDTs Symposium, pp. 1–2

Rowan Border, Jonathan D. Gammell, and Paul Newman (2018). “Sur-
face Edge Explorer (SEE): Planning Next Best Views Directly from
3D Observations”. In: IEEE International Conference on Robotics and
Automation, pp. 1–8

An experimental comparison of the observation performance of SEE with state-

of-the-art volumetric approaches demonstrates that SEE is capable of obtaining
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highly complete scene observations using fewer views and a significantly lower

computational time. These observations are obtained using shorter travel distances

than many of the volumetric approaches with the exception of those that consider

occlusions. This motivated the investigation of novel point-based methods for

considering occlusions and scene visibility with an unstructured scene representation.

Existing literature on NBV planning, including the volumetric approaches

evaluated for comparison in this thesis, has illustrated the value of considering

occlusions and scene visibility when proposing and selecting next best views. The

techniques applied by approaches with structured representations typically utilise

raycasting, which precludes their use with an unstructured representation. In order

to consider occlusions and scene visibility with an unstructured representation it

was necessary to investigate novel solutions that provided pointwise considerations.

The investigation of proactive occlusion handling (Ch. 4) presents a novel

method for representing pointwise occlusions and several strategies that aim to

utilise this representation to propose unoccluded views of target frontier points. An

experimental evaluation of these strategies in comparison with SEE demonstrates

that proposing and selecting views which are more likely to be unoccluded improves

the efficiency of scene observations as fewer views and shorter travel distances are re-

quired. A statistical analysis of the observation performance for each strategy shows

that the optimisation strategy is the most successful at proposing unoccluded views.

The investigation into considering scene visibility when selecting next best views

(Ch. 5) presents a novel graphical representation for encoding the shared visibility

of frontier points from the set of view proposals. Several metrics were investigated

for selecting next best views from this covisibility graph with the aim of obtaining

the greatest improvement in surface coverage while reducing the sensor travel

distance. Experiments comparing the observation performance of these metrics

with SEE demonstrate improvements in the efficiency of scene observations for each

metric and illustrate the trade-off that exists between a reduction in the number of

views required to observe a scene and reducing the overall sensor travel distance. A
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statistical analysis of the increases in surface coverage and travel distance per view for

each metric shows that the best overall performance is achieved by the EMR metric.

The best performing solutions to the challenges of considering occlusions and

scene visibility with an unstructured representation were integrated with SEE to

create SEE++ (Ch. 6). An experimental comparison of SEE++ with SEE and state-

of-the-art volumetric approaches demonstrates that SEE++ achieves significant

reductions in both the number of views and travel distance required to obtain scene

observations while maintaining a reasonable computation time. This illustrates the

importance of obtaining unoccluded views of scene surfaces and considering the

improvement in surface coverage attainable when selecting next best views.

This work on SEE++ was presented at the 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (App. C):

Rowan Border and Jonathan D. Gammell (2020). “Proactive Estimation
of Occlusions and Scene Coverage for Planning Next Best Views in an
Unstructured Representation”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1–8

The observation capabilities of SEE and SEE++ are shown to successfully

transfer from the observation of scene models in a simulation environment to the

observation of real world scenes (Ch. 7). Experimental results demonstrate that

both approaches were able to successfully observe scenes with varying sizes and

structural complexities independently using multiple sensing modalities. Qualitative

pointcloud results show that the observations obtained were largely complete despite

the presence of significant measurement noise. Quantitative evaluation metrics

evidence the improvements in observation performance achieved by SEE++ over

SEE. This work on demonstrating the real world observation capabilities of SEE

and SEE++ is being prepared for submission to a field robotics journal.

The presence of sensor noise and the absence of measurements on some unobserv-

able surfaces in the pointcloud results indicates that improvements in the quality of

real world scene observations could be attained by accounting for sensor-specific

variations in measurement noise. This could be achieved by computing a noise

model for each sensor which captures the variation of measurement noise with
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the surface textures being observed, the distance of the sensor from visible scene

surfaces and the orientation of views relative to the surface geometry. This noise

model would then be used to inform the filtering of sensor measurements and the

proposal of potential next best views. Information on the existence of scene surfaces

for which reliable measurements were not obtained from a given view could also be

considered when proposing views. This would be achieved by including knowledge

of noisy measurements that were removed by filtering in the scene representation.

During the course of this work it has become evident that providing publically

available implementations of presented NBV planning approaches represents a

valuable contribution to the research community. This enables researchers to pursue

further developments of the work and evaluate comparisons with other approaches

without incurring the overhead and uncertainty associated with producing a bespoke

implementation. Open-source implementations of SEE and SEE++ will be made

available in an upcoming journal paper in service of making such a contribution.

This will hopefully encourage the pursuit of further work on NBV planning with

an unstructured scene representation. Implementations of the presented novel

point-based techniques for considering occlusions and scene visibility without using

raycasting also have the potential to be applied in other research areas.

8.0.1 Contributions

In summary, this thesis makes the following key contributions:

1. A novel unstructured scene representation using measurement density, which

is founded on the principle that obtaining a minimum measurement density on

all scene surfaces is a sufficient condition to achieve a complete observation.

2. SEE, a NBV planning approach using this novel representation that imposes no

assumptions on the scene structure. Views are proposed, selected and adapted

to improve a scene observation by directly considering point measurements.

3. An investigation of point-based strategies for proactively handling occlusions

which detect occluded views of target points and aim to propose alternative

unoccluded views from which the target surfaces can be successfully observed.
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4. An investigation of methods for considering scene visibility with an unstruc-

tured representation which aim to select next best views that can provide the

greatest improvements in scene coverage while travelling short distances.

5. SEE++, a NBV planning approach that integrates the most successful methods

for handling occlusions and considering scene visibility with SEE to greatly

improve observation performance by utilising an increased computation time.

6. Real world demonstrations of the presented approaches obtaining observations

of several different scenes using both a stereo camera and LiDAR sensor.

7. Implementations of SEE and SEE++ that will be made available open-source

to aid further research into NBV planning with unstructured representations.

8.0.2 Future Work

The demonstrated success of using an unstructured density representation for

improving the performance of scene observations illustrates that the use of unstruc-

tured representations for NBV planning is worthy of further investigation. Such

research could consider extending the density representation presented in this thesis

(e.g., varying the target density with the surface complexity) or investigating new

unstructured representations (e.g., one that considers the distribution of points).

The formulation of novel strategies for proactively handling point-based occlu-

sions provides an opportunity to extend the NBV planning literature on occlusion

handling beyond approaches that rely on raycasting. Similar strategies could also

be applied to other fields where occlusions are considered, such as for mapping and

navigation tasks. The use of a covisibility graph to represent the shared visibility

of target manifolds between views could be adapted for NBV approaches with

volumetric and surface representations to improve their observation performance.
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A
Real World Observations

This appendix presents a complete set of photographs and pointcloud results, shown

from multiple viewpoints, for each of the real world scenes discussed in Chapter 7.
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Figure A.1: Photographs of the single box scene. It contains a 0.6x0.6x0.6m foam
box with a unique numerical marking on each side in reflective black duct tape.
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Figure A.2: The RGB coloured pointcloud result obtained from an observation of
the single box scene using SEE with the Intel RealSense D435.
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Figure A.3: The RGB coloured pointcloud result obtained from an observation of
the single box scene using SEE++ with the Intel RealSense D435.
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Figure A.4: The pointcloud result obtained from an observation of the single box
scene using SEE with the Velodyne VLP-16. The images use a colourmap based on
the LiDAR intensity values and show views from each corner of the scene.
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Figure A.5: The pointcloud result obtained from an observation of the single box
scene using SEE++ with the Velodyne VLP-16. The images use a colourmap based
on the LiDAR intensity values and show views from each corner of the scene.
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Figure A.6: Photographs of each side of the single tower scene. It contains two
foam boxes in a stacked configuration with a 45° rotational offset between the boxes.
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Figure A.7: The RGB coloured pointcloud result obtained from an observation of
the single tower scene using SEE with the Intel RealSense D435.
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Figure A.8: The RGB coloured pointcloud result obtained from an observation of
the single tower scene using SEE++ with the Intel RealSense D435.
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Figure A.9: The pointcloud result obtained from an observation of the single
tower scene using SEE with the Velodyne VLP-16. The images use a colourmap
based on the LiDAR intensity values and show views from each corner of the scene.



A. Real World Observations 193

Figure A.10: The pointcloud result obtained from an observation of the single
tower scene using SEE++ with the Velodyne VLP-16. The images use a colourmap
based on the LiDAR intensity values and show views from each corner of the scene.
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Figure A.11: Photographs of each side of the double towers scene. It contains
two stacks of rotationally offset foam boxes separated by a distance of less than 1 m.
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Figure A.12: The RGB coloured pointcloud result obtained from an observation
of the double towers scene using SEE with the Intel RealSense D435.



A. Real World Observations 196

Figure A.13: The RGB coloured pointcloud result obtained from an observation
of the double towers scene using SEE++ with the Intel RealSense D435.
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Figure A.14: The pointcloud result obtained from an observation of the double
towers scene using SEE with the Velodyne VLP-16. The images use a colourmap
based on the LiDAR intensity values and show views from each side of the scene.
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Figure A.15: The pointcloud result obtained from an observation of the double
towers scene using SEE++ with the Velodyne VLP-16. The images use a colourmap
based on the LiDAR intensity values and show views from each side of the scene.
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Figure A.16: Photographs of the small bookshelf scene. It consists of two shelves
full of books. The photographs show front, back and two side views of the bookshelf.



A. Real World Observations 200

Figure A.17: The RGB coloured pointcloud result obtained from an observation
of the small bookshelf scene using SEE with the Intel RealSense D435.
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Figure A.18: The RGB coloured pointcloud result obtained from an observation
of the small bookshelf scene using SEE++ with the Intel RealSense D435.
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Figure A.19: The pointcloud result obtained from an observation of the small
bookshelf scene using SEE with the Velodyne VLP-16. The images use a y-coordinate
colourmap and show views of the front, back and two side angles of the bookshelf.
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Figure A.20: The pointcloud result obtained from an observation of the small
bookshelf using SEE++ with the Velodyne VLP-16. The images use a y-coordinate
colourmap and show views of the front, back and two side angles of the bookshelf.



A. Real World Observations 204

Figure A.21: Photographs of the rhinoceros pelvis scene. It contains the pelvis
of a Javan rhinoceros (rhinoceros sondaicus) specimen that was loaned from the
Oxford University Museum of Natural History (OUMNH 19164). The scene exhibits
detailed visual features and surface texture with relatively complex geometry.



A. Real World Observations 205

Figure A.22: The RGB coloured pointcloud result obtained from an observation
of the rhinoceros pelvis scene using SEE with the Intel RealSense D435.

Figure A.23: The RGB coloured pointcloud result obtained from an observation
of the rhinoceros pelvis scene using SEE++ with the Intel RealSense D435.
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Figure A.24: The pointcloud result obtained from an observation of the rhinoceros
pelvis scene using SEE with the Velodyne VLP-16. The top row of images use a
y-coordinate colourmap and the bottom row of images use a z-coordinate colourmap.

Figure A.25: The pointcloud result obtained from an observation of the rhinoceros
pelvis using SEE++ with the Velodyne VLP-16. The top row of images use a
y-coordinate colourmap and the bottom row of images use a z-coordinate colourmap.
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Figure A.26: Photographs of the crocodile skull scene. It contains the skull of a
saltwater crocodile (crocodylus porosus) specimen that was loaned from the Oxford
University Museum of Natural History (OUMNH 19149). The jaw was propped
open using a tripod to enable the observation of interior surfaces.
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Figure A.27: The RGB coloured pointcloud result obtained from an observation
of the crocodile skull scene using SEE with the Intel RealSense D435.

Figure A.28: The RGB coloured pointcloud result obtained from an observation
of the crocodile skull scene using SEE++ with the Intel RealSense D435.
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Figure A.29: The pointcloud result obtained from an observation of the crocodile
skull scene using SEE with the Velodyne VLP-16. The top row of images use a
y-coordinate colourmap and the bottom row of images use a z-coordinate colourmap.

Figure A.30: The pointcloud result obtained from an observation of the crocodile
skull using SEE++ with the Velodyne VLP-16. The top row of images use a y-
coordinate colourmap and the bottom row of images use a z-coordinate colourmap.



B
Surface Edge Explorer (SEE): Planning

Next Best Views Directly from 3D
Observations

This work was first presented in Border et al. (2017) at the 2017 Joint Industry

and Robotics CDTs Symposium and extended in Border et al. (2018) at the 2018

IEEE International Conference on Robotics and Automation. The experimental

results presented in this thesis correct a mistake in Border et al. (2018). The

implementation of volumetric approaches which produced the results in Border

et al. (2018) used an erroneous sampling procedure that resulted in a nonuniform

distribution of views proposals being sampled from the view surface. Experimental

results presented throughout this thesis use a corrected implementation that samples

a uniform distribution of view proposals.
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Surface Edge Explorer (SEE):

Planning Next Best Views Directly from 3D Observations

Rowan Border 1, Jonathan D. Gammell 1 and Paul Newman 1

Abstract— Surveying 3D scenes is a common task in robotics.
Systems can do so autonomously by iteratively obtaining mea-
surements. This process of planning observations to improve
the model of a scene is called Next Best View (NBV) planning.

NBV planning approaches often use either volumetric (e.g.,
voxel grids) or surface (e.g., triangulated meshes) representa-
tions. Volumetric approaches generalise well between scenes as
they do not depend on surface geometry but do not scale to
high-resolution models of large scenes. Surface representations
can obtain high-resolution models at any scale but often require
tuning of unintuitive parameters or multiple survey stages.

This paper presents a scene-model-free NBV planning ap-
proach with a density representation. The Surface Edge Ex-
plorer (SEE) uses the density of current measurements to
detect and explore observed surface boundaries. This approach
is shown experimentally to provide better surface coverage
in lower computation time than the evaluated state-of-the-art
volumetric approaches while moving equivalent distances.

I. INTRODUCTION

Obtaining high-resolution 3D models of real-world scenes

is a common task. These observations may be captured with a

variety of robotic platforms (e.g., wheeled, articulated, aerial

platforms, etc.) in a variety of different environments (e.g.,

outdoors, inside pipes, etc.)

The individual observations can then be combined into a

single 3D representation (e.g., a triangulated 3D mesh). The

quality of this model depends on how well the observations

capture the scene, i.e., the number and distribution of the

individual measurements. The problem of selecting and

planning sensor views to obtain high-resolution models is

known as Next Best View (NBV) planning.

NBV planning approaches can be classified as either

scene-model-based or scene-model-free. Model-based ap-

proaches [1, 2] use a priori knowledge of the scene structure

to compute a set of views from which the scene (i.e., an

object or environment) is observed. These approaches work

for a given scene but do not generalise well to other scenes.

Model-free approaches often use a volumetric [3] or

surface representation [4]. Volumetric representations discre-

tise the scene into voxels and can obtain high observation

coverage with a small voxel size but do not produce high-

resolution models of large scenes. Surface representations

estimate surface geometry from observations and can obtain

high quality models of large scenes but often require tuning

of unintuitive parameters or multiple survey stages.

1 Rowan Border, Jonathan D. Gammell and Paul Newman
are with the Oxford Robotics Institute, Department of Engi-
neering Science, Oxford University, Oxford, United Kingdom.
rborder,gammell,pnewman@robots.ox.ac.uk

(a) SEE (b) AE [11]

Fig. 1. A comparison of the point cloud resulting from running SEE (a) and
AE [11] (b) on a full-scale model of the Radcliffe Camera in Oxford. SEE
observed 99% of the model at a 0.05 m resolution. AE, the best-performing
volumetric approach, observed 79% in the same number of views.

This paper presents the Surface Edge Explorer (SEE),

a scene-model-free approach to NBV planning that uses

a density representation. This representation uses a given

resolution and measurement density to define a frontier

between fully and partially observed surfaces. Sensor views

are proposed to observe this frontier and expand the fully

observed surfaces. NBVs are selected and new measurements

are obtained until the entire scene is observed at the chosen

resolution and measurement density.

This density representation does not require an a priori

discretisation of the scene as used by volumetric approaches

and scales with the number of measurements obtained and

not the size of the scene. This makes SEE appropriate for

large-scale observations (e.g., inspecting a bridge with an

aerial vehicle). SEE uses a more intuitive parameterisation

than many surface representations and does not require

multiple survey stages.

SEE is evaluated in simulation on four standard models

[5–8] and a full-scale model of the Radcliffe Camera in

Oxford [9] (Fig. 1). The results show that it achieves higher

surface coverage in less computational time than the eval-

uated state-of-the-art volumetric approaches [10–12] while

requiring the sensor to travel equivalent distances.

Section II presents an overview of NBV planning litera-

ture. Section III presents SEE. Section IV presents an exper-

imental comparison of SEE with state-of-the-art volumetric

approaches on four standard models and a full-scale model of

the Radcliffe Camera. Sections V and VI present a discussion

of the results and our plans for future work.



II. RELATED WORK

Existing NBV planning work covers a variety of scene

sizes, from small objects (e.g., the Stanford Bunny [6]) [3,

10–17] to buildings [1, 2, 4, 18–23].

Surveys of NBV planning literature [24–26] categorise

approaches based on their scene representation. The most

widely used categorisation [25] classifies approaches as

either scene-model-based or scene-model-free. Model-based

approaches [1, 2] require an a priori scene model and do not

generalise well. Within the class of model-free approaches

there are global, volumetric and surface representations.

Global representations [16, 17] consider all observations

as part of a single connected surface. Pito [16] generates

a tessellated view space and selects NBVs to observe the

boundaries of a partial mesh until the mesh boundaries are

closed. It obtains high-resolution models but requires a fixed

work-space and known sensor model. Yuan [17] estimates the

geometry of surface patches and selects views to observe the

unknown space between them and obtain a single surface but

only demonstrates it on simple surface geometries.

Volumetric representations [3, 10, 12, 18–22] discretise

a bounded scene volume into a voxel grid from which

view selection metrics can be computed. Seminal work by

Connolly [3] uses a metric that counts the number of unseen

voxels visible from potential views on a tessellated sphere

encompassing the scene. View metrics in later work [10, 12]

consider multiple factors but still sample views from a

tessellated surface. Vasquez-Gomez et al. [10] rank potential

views based on reachability, distance, overlap with previous

views and the number of visible unseen voxels. Delmerico

et al. [12] use Information Gain (IG) metrics to evaluate

views based on voxel visibility, observability and proximity

to existing observations.

The model resolution obtained from a volumetric repre-

sentation depends on the resolution of the voxel grid and

the number of potential views. Smaller voxels and more

potential views allow for greater model detail but require

higher computational costs to raytrace each view. These

representations are difficult to scale to large scenes without

lowering the model quality or increasing the computation

time.

Volumetric representations [18–22] have been applied to

large scenes despite these limitations. Most approaches miti-

gate the increase in computation time by reducing the number

of potential views. Yoder et al. [18] only sample views to

observe the frontier between seen and unseen voxels and

select NBVs with a view selection metric that balances view

utility and travel distance. Meng et al. [19] similarly only

sample views that observe frontier voxels and select NBVs

with an IG metric. Bircher et al. [20] use the RRT algorithm

[27] to plan paths through known voxels and sample views

at the vertices of the RRT tree to observe unknown voxels.

The NBV is selected from the sampled views with an IG

metric. Song et al. [21] present a similar approach to [20]

using the RRT* algorithm [28] to plan a path to the NBV

that maximises the observation of frontier voxels. Potential

views are sampled within a given radius of the RRT* path

and the subset that provides the greatest coverage is selected.

Reducing the number of potential views can mitigate

the increased computational cost of large scenes but the

resolution of the voxel grid is still limited by the raytrac-

ing complexity. Bissmarck et al. [22] compare raytracing

algorithms that consider voxel observability, frontier voxels,

sparse ray casting and using a hierarchy of voxel grid

resolutions to reduce this complexity. They demonstrate that

these algorithms outperform simple raycasting in terms of

computation time but a NBV planning approach using the

algorithms for view selection is not presented.

Surface representations [4, 13, 15, 23] estimate surface

geometry from sensor observations (e.g., by triangulating

measurements into a mesh) and compute views to extend the

surface boundaries and improve the surface quality. Some

approaches incrementally extend the surface representation

with new observations [13, 15] while others use a multistage

survey to iteratively refine a surface model of the scene

[4, 23].

Dierenbach et al. [13] estimate surface geometry by

training a neural network to generate a simplified mesh

from sensor measurements. Point density is computed locally

around the mesh vertices and views are proposed to extend

the mesh and obtain a given point density. Khalfaoui et al.

[15] apply density-based clustering to sensor observations

and propose views to observe the cluster boundaries until

the maximum distance between cluster centers is below a

given threshold. These approaches can obtain high-resolution

models but require tuning of unintuitive parameters.

Multistage approaches [4, 23] refine an existing surface

mesh that is often obtained manually or with a preplanned

path. Hollinger et al. [4] represent the mesh uncertainty as a

Gaussian process and propose views to improve the surface

estimation. Roberts et al. [23] sample potential views within

a given distance of the mesh surface, select the minimal

subset that can provide complete coverage and plan the

shortest path between them.

Some work [11, 14] presents approaches using both vol-

umetric and surface representations. Kriegel et al. [11] com-

bine a volumetric representation with an IG view selection

metric and a surface representation that selects views to

extend the boundaries of a surface mesh and obtain a given

point density. Karaszewski et al. [14] obtain an initial scene

survey with a volumetric representation and then fill discon-

tinuities in the observed surfaces based on the local point

density. The local measurement density is also considered

by SEE but without the complexity of using a different

underlying representation.

SEE is a NBV planning approach that uses a density

representation. Unlike volumetric representations, it scales

well to large scenes and is shown to obtain accurate and

complete models of scenes at any scale (i.e., both bunnies

and buildings). Unlike surface representations, it does not

require multistage surveys or have unintuitive parameters.

SEE instead uses only measurement density and resolution.



Fig. 2. An illustration of SEE’s density-based classification. Points with a
sufficient number of neighbours are classified as core points (black) while
those without are outlier points (white). Points with both core points and
outlier points in their neighbourhood are frontier points (grey).

III. SURFACE EDGE EXPLORER (SEE)

SEE seeks to observe an entire scene with a minimum

measurement density. This measurement density is defined

by the resolution, r and target density, ρ, used to detect

frontiers in the measurements. Frontiers are detected by

classifying sensor measurements (i.e., points) based on the

number of neighbouring points within the distance r. Points

with sufficient neighbours (i.e., the local density is greater

than or equal to ρ) are classified as core and those without are

classified as outliers. Outlier points with both core and outlier

neighbours are then classified as frontier points (Fig. 2).

These frontier points represent the boundary between fully

and partially observed surfaces (Sec. III-A).

The scene observation is expanded by taking measure-

ments at these frontiers. Potential views are proposed by

estimating the local surface geometry around frontier points

as a plane described by a set of orthogonal vectors (Fig. 3).

These vectors describe the normal to the local surface, the

density boundary and the direction of partial observation (i.e.,

the frontier) (Sec. III-B).

Views are proposed orthogonal to this locally estimated

surface plane to maximise sensor coverage (Fig. 4). The view

distance can be specified by the user or defined as a function

of the sensor parameters and desired resolution (Sec. III-C).

The NBV is selected from these view proposals to reduce

the distance from both the current sensor position and the

first observation of the scene. This guides observations to

expand one frontier at a time and decreases the total distance

travelled by the sensor (Sec. III-D).

The proposed views will not expand frontiers on dis-

continuous or highly non-planar surfaces. These views are

iteratively adjusted in response to new observations until the

frontier point is observed or a sufficient number of attempts

have been made to classify it as an outlier. Points classified

as outliers will not be reprocessed unless a new point is

observed nearby (Sec. III-E).

SEE continues to select NBVs until there are no more

frontier points and all measurements have been classified as

core or outlier points. This can be achieved in unbounded

real-world problems by discarding all measurements outside

of a predefined scene boundary (Sec. III-F).

Fig. 3. An illustration of SEE’s local surface geometry estimation. The
geometry of the surface at the frontier points (grey) is estimated from nearby
points with an orthogonal set of vectors. These vectors are orientated normal
to the surface, en (out of the page), parallel to the boundary line, eb and
perpendicular to the boundary line (i.e., into the frontier), ef .

A. Frontier Detection

Frontiers between fully and partially observed surfaces

are detected by performing density-based classification of

sensor measurements (i.e., points). Points are classified as

either core, frontier or outlier based on the number of

neighbouring points, k, with a radius, r, of the point (Fig. 2).

The number of observed points in the r-ball is compared with

the minimum number of points, kmin, necessary to satisfy the

desired point density, ρ, where kmin = 4
3ρπr

3.

This density-based classification approach is based on

DBSCAN [29]. DBSCAN classifies a set of sensor mea-

surements, P := {pi}
n
i=1 where pi ∈ R

3, as core points,

C, frontier points, F , or outlier points, O. These labels are

complete and unique such that

P ≡ C ∪ F ∪O and C ∩ F ≡ C ∩O ≡ F ∩O ≡ ∅ .

A point is classified as a core point if it has more than

kmin neighbours within a distance r,

C := {p ∈ P | |Np| ≥ kmin} ,

where Np is the set of points within r of p,

Np := N(P, r,p) := {q ∈ P | ||q− p|| ≤ r} ,

|| · || is the L2-norm and | · | is set cardinality.

A point is classified as a frontier point if it is not a core

point but has both core and outlier neighbours,

F := {p ∈ P | |Np| < kmin ∧ Np ∩ C 6= ∅ ∧ Np ∩ O 6= ∅} .

It is otherwise classified as an outlier point,

O = P \ (C ∪ F ) .

This paper modifies DBSCAN to classify measurements

obtained from incremental observations (Alg. 1). When a

new sensor observation is obtained, the set of new measure-

ments, M , is combined with the existing classification sets,

C, F and O (Line 1). Each new point, p, is processed and

added to either the core, frontier or outlier point sets (Line

3). Any new point that has not yet been classified is added to

the (re)classification queue, Q, along with its neighbourhood

points (Lines 4–5). If a point in the queue is not a core

point then it is (re)classified based on the new measurements

(Lines 6–7). Points with insufficient neighbours to be core



Algorithm 1 POINT-CLASSIFIER(M,C, F,O, r, kmin)

1: P := C ∪ F ∪O ∪M
2: V ← ∅
3: for all p ∈M do
4: if p /∈ V then
5: Q← N(P, r,p) ∪ {p}
6: for all q ∈ Q do
7: if q /∈ C then
8: Nq ← N(P, r,q)
9: if |Nq| < kmin then

10: if Nq ∩ C 6= ∅ and Nq ∩O 6= ∅ then
11: F ← F ∪ {q}
12: O ← O \ {q}
13: else
14: O ← O ∪ {q}

15: else
16: C ← C ∪ {q}
17: F ← F \ {q}
18: O ← O \ {q}
19: if q ∈M and q /∈ V then
20: Q← Q ∪Nq

21: V ← V ∪ {q}

are classified as frontier points if they have both core and

outlier neighbours or otherwise as outlier points (Lines 9–

14). Points with sufficient neighbours are classified as core

points (Line 16). If the point was previously unclassified then

its neighbourhood is added to the (re)classification queue and

it is marked as classified (Lines 19–21).

B. Surface Geometry Estimation

Good observations require knowledge of the surface geom-

etry. The surface around a frontier point, f , is approximated

as locally planar through eigendecomposition of a matrix

representation of its neighbourhood,

D := [p1 − f , ...,pn − f ] ∈ R
3×|Nf | ,

where pi ∈ Nf are the neighbouring points.

The eigendecomposition of the square matrix, A :=
DDT, produces a set of eigenvalues, Λ = {λ1, λ2, λ3}
and their corresponding eigenvectors, Υ = {ψ1, ψ2, ψ3},

satisfying the eigenequation,

Aψi = λiψi , i = {1, 2, 3} .

As A is a real orthogonal matrix, the set of eigenvectors

form an orthonormal basis (i.e., three mutually orthogonal

unit vectors) of D. Each eigenvector describes one compo-

nent of the observed surface geometry (Fig. 3). The normal

vector, en, is orthogonal to the surface plane. The boundary

vector, eb, points along the boundary between partially

and fully observed surfaces. The frontier vector, ef , lies

in the surface plane and points in the direction of partial

observation.

The surface geometry components are determined sequen-

tially from the eigenvectors, eigenvalues, view orientation

and the mean of the nearby points, p̄,

p̄ =
1

|Nf |

∑

p∈Nf

p− f .

Fig. 4. An illustration of SEE’s initial view proposal generation. Initial
view proposals, (x, φ), are generated around each frontier point (grey) from
the estimated local surface geometry, en, ef and eb. The view orientation,
φ, is given by the inverse sign of the normal vector, φ = −en. The view
position, x, is set at a view distance, dv, from the frontier point in the
direction of the normal vector, en. The dashed lines represent the field-of-
view of the sensor. These views are adjusted when observing surfaces with
discontinuities and occlusions to obtain the best view possible.

1) Normal vector: The normal vector, en, is assigned as

the eigenvector corresponding to the minimum eigenvalue

(i.e., the direction of least surface variance),

en = {ψi | λi = min {Λ}} .

The direction of the normal vector is chosen to be opposite

the direction of the view orientation, φ, such that,

|en · φ| < 0 .

2) Frontier vector: The frontier vector, ef , is the eigenvec-

tor perpendicular to the boundary of the partially observed

surface. It is assigned as the remaining eigenvector which

maximises the magnitude of the dot product with the mean

point,

ef = argmax
ψ ∈Υ\en

(|p̄ · ψ|) .

The direction of the frontier vector is chosen to point away

from the mean of the frontier point neighbourhood, into the

partially observed region of the point cloud such that,

|ef · p̄| < 0 .

3) Boundary vector: The remaining eigenvector is locally

tangential to the boundary between the density regions and

is referred to as the boundary vector. The direction of the

boundary vector is given by the cross product of the normal

and frontier vectors,

eb := en × ef .

C. View Generation

View proposals are generated to maximise sensor coverage

of the estimated planar surface around each frontier point. A

view proposal, v := {x,φ}, is defined by a view position,

x and orientation, φ.

The view position is a distance, dv, on the normal vector,

en, from the frontier point,

x = f + dven .



The view distance may be user specified or defined as

function of the sensor parameters and desired resolution.

The view orientation, φ, is given by the inverse of the

normal vector (i.e., pointing in the direction of the surface),

φ = −en .

D. NBV Selection

The NBV is selected from the set of view proposals,

W := {g(f ∈ F )} ,

where g maps frontier points to view proposals (i.e., Sec.

III-C).

SEE observes the scene while reducing total travel distance

by selecting NBVs based on their incremental and origin

distances. The incremental distance of a NBV is given by

the difference between the current view position, xi and

the position of the proposed view. The origin distance of

a NBV is given by the difference between the position of

the proposed view and the first scene observation, x0.

The NBV, vi+1, is selected to minimise the global dis-

tance,

vi+1 = argmin
{x,φ}∈W ′

(||x− x0||) ,

from the set of view proposals, W ′, within r of the current

view,

W ′ = {{x,φ} ∈W | ||x− xi|| < r} .

If there are no nearby view proposals (i.e., W ′ ≡ ∅) then

the NBV that minimises the local distance is selected,

vi+1 = argmin
{x,φ}∈W

(||x− xi||) .

E. Local View Adjustment

Real surfaces have discontinuities and occlusions that

invalidate the locally planar assumptions and prevent expan-

sion of the frontier. In these situations, SEE incrementally

adapts the current view until either the frontier point is

observed or sufficient attempts have been made to classify it

as an outlier.

The locally planar assumption is often violated by surface

discontinuities (e.g., edges or corners) or occlusions by other

surfaces. When the frontier point is near a discontinuity, the

view must be adjusted to observe both sides of it (i.e., to

see around the corner). When the frontier point is occluded

by another surface, the view must be adjusted to avoid the

occlusion (i.e., to see around the other surface). These views

are not orthogonal to the locally estimated surface. SEE

attains such views by iteratively using new measurements

to translate and rotate the current view to move the center

of the observed points towards the frontier point.

The magnitude of the translation and rotation for each

axis is determined by the displacement, s := [s1, s2, s3]
T ,

between the center of observed points, ω, and the frontier

point along the axis,

s = RT
d (f − ω) ,

where Rd = [en ef eb] is a rotation into a local frame.

The view is first translated along the frontier vector by a

distance, df ,

df = s1(dt + 1) ,

and rotated around the boundary vector by θb,

θb = tan−1

(

dvs1dt

d2v + s21(dt + 1)

)

.

It is then translated along the boundary vector by a

distance, db,

db = s2(dt + 1) ,

and rotated around the frontier vector by θf ,

θf = tan−1

(

dvs2dt

d2v + s22(dt + 1)

)

.

The distance factor, dt, determines the magnitude of the

translation and rotation for the view adjustment. SEE scales

it exponentially with the number of view adjustments, n, for

a given frontier point, dt = 2n. This stops the size of the

view adjustment from converging to zero as the center of

observed points moves closer to the frontier point.

The position and orientation of the adjusted view, vi+1,

is then given by,

xi+1 = f − dvφi+1 ,

φi+1 =
f −RfRb(xi + dfef + dbeb)

||RfRb(xi + dfef + dbeb)||
.

The rotation matrices, Rb and Rf , are computed with

Rodrigues’ rotation formula [30] using the frontier and

boundary axes and angles, θf and θb,

Rb = (cos θb)I+ sin θbe
∧
b + (1− cos θb)ebe

T
b ,

Rf = (cos θf)I+ sin θfe
∧
f + (1− cos θf)efe

T
f ,

where,

u∧ =





0 −u2 u1
u2 0 −u0
−u1 u0 0



 ,

and I is the identity matrix.

The sensor is moved to the adjusted view and another

observation is obtained. This process is repeated iteratively

until the frontier is expanded (i.e., the other side of the

surface discontinuity is observed) or the Euclidean distance

between the frontier point and the center of observed points

stops reducing. If this termination criterion is reached then

the view is reinitialised on the viewing axis from which the

frontier point was observed (i.e., where no occluding surface

exists) but at a distance from the surface no greater than that

of the observing view, xobs.

This new view position is

xi+1 = f −min{||f − xobs|| , dv}φi+1 .

The new view orientation is

φi+1 =
f − xobs

||f − xobs||
.

When starting the view adjustment from the observation

viewing axis, the distance factor is reinitialised, dt = 1,



and adjustment is again performed until termination. If

this process also reaches the termination criterion then the

frontier point is reclassified as an outlier point.

F. Completion

SEE completes the observation of a scene when the final

frontier point has been observed and all points are classified

as either core points or outliers. This termination criterion

assumes that the observable scene is finite. In the real world

this condition can be met by defining a scene boundary and

discarding all measurements outside it.

IV. EVALUATION

SEE is compared to state-of-the-art NBV approaches with

volumetric representations, Area Factor (AF) [10], Average

Entropy (AE) [11], Occlusion Aware (OA) [12], Unobserved

Voxel (UV) [12], Rear Side Voxel (RSV) [12], Rear Side

Entropy (RSE) [12] and Proximity Count (PC) [12] on four

standard models, the Stanford Armadillo [5], the Stanford

Bunny [6], the Stanford Dragon [7], the Newell Teapot [8]

and on a full-scale model of the Radcliffe Camera [9]. The

implementations of the volumetric approaches are provided

by [12].

A. Simulation Environment

Measurements are simulated from a depth sensor by

raycasting into a triangulated mesh of a scene model and

adding Gaussian noise (µ = 0 m, σ = 0.01 m) to the ray

intersections to simulate a noisy 3D range sensor. These

measurements are given to the NBV algorithms as sensor

observations. The process is repeated for each view requested

by the algorithm.

The depth sensor is defined by a field-of-view in radians,

α, and a dimension in pixels, wx and wy. The simulation

environment contains no ground plane and the sensor can

move unconstrained in three dimensions with six degrees of

freedom. The sensor is prevented from moving inside scene

surfaces by checking for intersections between the sensor

path and the scene model. The sensor parameters used for the

evaluation are α = π
3 rad, wx = 600 px and wy = 600 px.

B. Evaluation Parameters

Potential views for the volumetric approaches are sampled

from a given view surface (i.e., a view sphere) surrounding

the scene as in [10, 12]. Kriegel et al. [11] does not restrict

views to a view surface but we use the implementation

provided by [12] which does. The radius of the view sphere

is defined as half the diagonal of the scene bounding box

plus a chosen offset of 2 m for the standard models and

16 m for the Radcliffe Camera. The view distance for SEE

is set to the radius of the view sphere.

SEE uses a measurement density of ρ = 4000 points per

m3 for the standard models and ρ = 60 points per m3 for the

Radcliffe Camera. The resolution used is r = 0.02 m for the

standard models and r = 0.2 m for the Radcliffe Camera.

The volumetric approaches use the same resolutions for their

voxel grids.

Every algorithm was run fifty times on each model for a

given number of views. SEE was run until its completion

criterion was satisfied. The view limit for the IG approaches

on each model is set to 1.5× the maximum number of views

used by SEE to demonstrate their convergence. The number

of views sampled on the view sphere is defined as 2.4× the

view limit as in [12].

C. Evaluation Metrics

The algorithms are evaluated by calculating their relative

surface coverage, computational time and sensor travel dis-

tance. These values are averaged across fifty experiments on

each model (Fig. 5).

1) Surface Coverage: The surface coverage of an ap-

proach is measured as the ratio of observed model points,

Mo, to total model points, Mt,

τ :=
Mo

Mt
.

A point is considered observed, Mo ⊆ Mt, if there is

a measurement within rd of the point. This registration

distance is chosen as rd = 0.005 m for the standard models,

as in [12], and rd = 0.05 m for the Radcliffe Camera model.

2) Time: The time taken to compute next best views is

measured and added to a cumulative total. The time required

for sensor travel is not considered.

3) Distance: The distance travelled by the sensor is mea-

sured by summing Euclidean distance between the positions

of subsequent views.

V. DISCUSSION

The experimental results demonstrate that SEE outper-

forms the evaluated state-of-the-art volumetric approaches

(Fig. 5) by requiring less computational time to plan views

that obtain greater surface coverage with near equivalent

travel distances, regardless of scene complexity and scale.

SEE is shown to consistently obtain high surface coverage for

models with different surface complexities and scales while

the volumetric approaches demonstrate varying performance.

Standard models with a large amount of self-occlusions

(e.g., the ears of the Stanford Bunny and the handle of the

Newell Teapot) demonstrate the advantages of the adaptable

views used by SEE. The evaluated volumetric approaches

perform worse on these problems as they do not adjust their

views to account for occlusions. The view selection metric

presented in [11] does adapt views to handle occlusions but

this is not included in the implementation provided by [12].

The Radcliffe Camera model demonstrates the difficulty

of scaling volumetric approaches to large scenes. The large

resolution necessary for reasonable raytracing allows voxels

to be observed by discontinuous measurements (Fig. 1).

The experiments show that the computational perfor-

mance of SEE is logarithmically better than the volumetric

approaches. The poor performance of the volumetric ap-

proaches is due to the computational complexity of ray-

tracing a high-resolution voxel grid from every view on the

view sphere when selecting a NBV. The limited scalability



Stanford Armadillo (1 m) [5]

Stanford Bunny (1 m) [6]

Stanford Dragon (1 m) [7]

Newell Teapot (1 m) [8]

Radcliffe Camera (40 m) [9]

Fig. 5. The performance of SEE and state-of-the-art volumetric approaches [10–12] on four (1 m) standard models, the Stanford Armadillo [5], the
Stanford Bunny [6], the Stanford Dragon [7], the Newell Teapot [8] and on a full-scale (40 m) model of the Radcliffe Camera [9]. Noise-free measurements
obtained by SEE are presented in the left-most column to illustrate the model. The graphs present the mean performance calculated from fifty independent
trials on each model. Left to right they present the mean surface coverage vs the number of views, the mean computational time required to plan NBVs
and the mean distance travelled by the sensor. The error bars denote one standard deviation around the mean. These results show that SEE achieves higher
surface coverage in less computational time and with near equivalent travel distances when compared to the evaluated volumetric approaches.



of the volumetric approaches with scene size is demonstrated

by the difference in computational performance between the

standard models and the Radcliffe Camera model.

While SEE travels a larger distance per-view in the ex-

periments, it initially achieves equivalent surface coverage

per unit distance. The volumetric approaches then appear to

continue to travel without significantly improving coverage

while SEE continues to increase coverage as it travels. As a

result, by the time SEE terminates it has travelled distances

equivalent to many of the other approaches but has achieved

higher surface coverage.

VI. CONCLUSION

SEE is a scene-model-free approach to NBV planning that

uses a density representation. The representation defines a

frontier between fully and partially observed surfaces based

on a user-specified resolution and measurement density. View

proposals are generated to observe this frontier and extend

the scene coverage. NBVs are selected and new measure-

ments are obtained until the scene is fully observed with the

given measurement density and at the specified resolution.

The density representation used by SEE has a number

of advantages over volumetric and surface representations.

Unlike volumetric representations, the complexity of SEE

only scales with the number of measurements and not scene

scale, making it possible to obtain high-resolution models

of large scenes. In contrast to many surface approaches the

measurement density and resolution parameters can be spec-

ified intuitively and only a single survey stage is required.

Experimental results show that SEE outperforms state-of-

the-art volumetric approaches in terms of surface coverage

and computation time. It take less computation time to

propose views that achieve greater surface coverage with an

equivalent travel distance.

SEE was only compared to publicly available volumetric

approaches as we were unable to attain implementations of

relevant surface approaches. We plan to implement state-of-

the-art surface (e.g., [13]) and/or combined approaches (e.g.,

[11]) and present comparisons with these in future work. SEE

may be made available to other researchers upon request to

facilitate comparisons. We are also working to deploy and

test SEE on real-world problems with an aerial platform.
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Proactive Estimation of Occlusions and Scene Coverage for

Planning Next Best Views in an Unstructured Representation

Rowan Border 1 and Jonathan D. Gammell 1

Abstract— The process of planning views to observe a scene is
known as the Next Best View (NBV) problem. Approaches often
aim to obtain high-quality scene observations while reducing
the number of views, travel distance and computational cost.

Considering occlusions and scene coverage can significantly
reduce the number of views and travel distance required to
obtain an observation. Structured representations (e.g., a voxel
grid or surface mesh) typically use raycasting to evaluate the
visibility of represented structures but this is often compu-
tationally expensive. Unstructured representations (e.g., point
density) avoid the computational overhead of maintaining and
raycasting a structure imposed on the scene but as a result do
not proactively predict the success of future measurements.

This paper presents proactive solutions for handling occlu-
sions and considering scene coverage with an unstructured
representation. Their performance is evaluated by extending the
density-based Surface Edge Explorer (SEE). Experiments show
that these techniques allow an unstructured representation to
observe scenes with fewer views and shorter distances while
retaining high observation quality and low computational cost.

I. INTRODUCTION

High-quality 3D observations of the real world are valu-

able for performing infrastructure analysis and creating re-

alistic simulations. A bounded region of space containing

structures (i.e., a scene) is often observed with a depth sensor

that is actuated by a robotic or human-operated platform.

Finding a set of views to observe a scene is known as the

Next Best View (NBV) planning problem. Approaches to the

NBV problem seek to obtain high-quality scene observations

while reducing the number of views taken, the distance

travelled and/or the associated computational cost.

Scenes can be observed using fewer views and less travel-

ling by planning views with good visibility of incompletely

observed surfaces that are close to the sensor position. This

is typically achieved by accounting for occlusions and scene

coverage when proposing and selecting next best views.

Structured representations can detect occlusions and eval-

uate surface coverage by raycasting their imposed structure

(i.e., mesh triangles for surface representations or voxels for

volumetric structures). Raycasting provides valuable knowl-

edge for selecting views but it is often computationally

expensive and does not aid the proposal of unoccluded views.

Unstructured representations (e.g., point density) alter-

natively reason directly about measurements. Their use of

point-based scene knowledge mitigates the computational

1 Rowan Border and Jonathan D. Gammell are with the Estimation,
Search, and Planning (ESP) Research Group, Oxford Robotics Institute
(ORI), Department of Engineering Science, University of Oxford, Oxford,
United Kingdom. {rborder,gammell}@robots.ox.ac.uk

Fig. 1. A mesh reconstruction of the pointcloud obtained by SEE++ from
observing a saltwater crocodile (Crocodylus porosus) skull [1] with a hand-
held sensor. Considering occlusions and scene coverage reduced the number
of views by 41% (134 vs. 226) and distance travelled by 46% (46m vs.
85m) at the cost of an 187% increase in computation time (158 s vs. 55 s).

cost of maintaining an imposed structure and does not con-

strain the fidelity of represented information; however, point

representations preclude the use of traditional methods (e.g.,

raycasting) for evaluating occlusions and scene coverage.

This paper presents strategies for proactively handling

occlusions and considering scene coverage with an unstruc-

tured representation. These techniques detect point-based

occlusions, optimise unoccluded view proposals and evaluate

pointwise visibility to select next best views that most

improve an observation while travelling short distances.

The presented methods reduce the number of views and

travel distance required to obtain complete observations. This

is shown by extending the Surface Edge Explorer (SEE) [2],

a NBV approach with an unstructured density representation.

SEE++ is compared experimentally to SEE and state-

of-the-art volumetric approaches [3–5] in simulation. Three

standard models [6–8] and a full-scale building model [9] are

observed with simulated depth sensors. The results show that

SEE++ consistently requires fewer views and shorter travel

distances than the other evaluated approaches to obtain an

equivalent quality of scene observations.

Real world results for SEE and SEE++ are demonstrated

with the observation of a saltwater crocodile (Crocodylus

porosus) skull [1] using an Intel Realsense D435 (Fig. 1).

This paper is organised as follows. Section II presents a

review of existing methods to account for occlusions and

scene coverage. Section III presents point-based approaches

for proactively handling occlusions and scene coverage.

Section IV presents both statistically significant comparisons

of NBV approaches in a simulated environment and a real-

world demonstration of SEE and SEE++. Sections V and VI

discuss the results and plans for future work.



II. RELATED WORK

Scott et al. [10] present a two-dimensional categorisation

of NBV approaches. Techniques are classified by their scene

representation and whether the approach is model-free or

model-based. Model-based approaches require an a priori

scene model to plan a view path. These approaches are suited

for inspection tasks that compare real-world models with a

known ground truth but do not generalise to unknown scenes.

Model-free approaches plan next best views based on

previous measurements and do not require a priori scene

models. These approaches commonly represent the scene

with a volumetric or surface representation. A volumetric

representation discretises the scene into a 3D voxel grid that

represents whether volumes of space contain measurements.

Surface representations approximate the scene geometry by

connecting measurements into a triangulated surface mesh.

A. Volumetric Approaches

Methods for proposing and selecting next best views

are often tied to the representation used. Volumetric-based

approaches [3, 5, 11–18] commonly evaluate scene visibil-

ity by raycasting their voxel grid from proposed views to

determine which voxels are observable. These algorithms

typically quantify view quality based on the number of

visible voxels and measurement density within each voxel.

The view proposal problem is frequently simplified in

volumetric-based approaches by initialising a fixed set of

views surrounding the scene [3, 5, 14–18]. This removes

the complexity of proposing views based on sensor mea-

surements but prevents approaches from adjusting views to

account for occlusions and scene coverage. As a result, the

observation quality obtained with these approaches is highly

dependent on the density and distribution of the fixed views.

Some volumetric approaches obtain high-quality scene

models by proposing views using path planning algorithms.

Bircher et al. [12] use an RRT [19] to grow an exploration

tree from the current sensor position through empty voxels in

the scene. Tree generation is stopped when a given number of

nodes are created or a node is found with a non-zero number

of visible unobserved voxels. The next best view is the node

from which the greatest number of unobserved voxels are

visible. Selin et al. [20] improve upon this approach by

computing the continuous (i.e., not voxel aligned) volume

of unobserved space visible from proposed views using

cubature integration and a novel sparse raycasting technique.

Song et al. [13] present a similar approach using RRT*

[21] but also consider the number of unobserved voxels

visible from the path between the current sensor position and

the potential next best view. They identify a minimal set of

intermediate views sufficient to observe all of the unobserved

voxels visible from the path and increase the completeness of

the scene model obtained. This approach is extended in [22]

with a surface representation that adapts views to account for

occlusions, and as a result improves the visibility of surfaces.

Occlusions are not actively addressed by these approaches,

except for in [22], as they evaluate the observability of scene

volumes but do not adapt views to improve their visibility.

B. Surface Approaches

Techniques using a surface representation [23–29] can

identify occlusions by raycasting their triangulated surface

mesh. Surface coverage is improved by proposing views

orthogonal to the mesh surface at detected boundaries. These

boundaries can either be outer edges of the mesh or holes

resulting from insufficient measurements. Many surface-

based approaches use a multistage observation process that

first obtains an initial surface mesh from preplanned views

and then proposes additional views to improve it [25–29].

Dierenbach et al. [23] and Khalfaoui et al. [24] present

approaches that do not require multistage observations.

Dierenbach et al. [23] use the Growing Neural Gas algorithm

[30] to incrementally construct a surface mesh from point

measurements. A 3D Voronoi tessellation is then computed

and the mesh vertex in the Voronoi cell with the lowest

density is selected as the target for the next best view. The

view is placed at a distance along the surface normal defined

as a function of the sensor resolution and scene size. This

approach is shown to obtain high-quality models but some

surfaces may be unobserved as occlusions are not considered.

Khalfaoui et al. [24] obtain high-quality scene observa-

tions by accounting for surface occlusions and selecting

views that improve scene coverage. Each point measurement

in the triangulated mesh is classified as either fully or

partially visible based on the angle between the local surface

normal and the poses of previous views. If a point is occluded

from all previous views then its surface normal, as defined by

the mesh, is added to the set of view proposals. These view

proposals are clustered using the mean shift algorithm and

the closest cluster center is selected as the next best view.

C. Other Approaches

Kriegel et al. [4] use a combined surface and volumetric

representation. Views are proposed to observe the boundaries

of a triangulated surface mesh. Next best views are selected

by considering the surface quality of the triangulated mesh

representation and the observation states of voxels in the

volumetric representation. Occlusions are handled by rotating

the view relative to the target surface until it can be observed.

SEE [2] uses a density representation. Measurements are

classified based on the number of neighbouring points within

a given radius and views are proposed to observe surfaces

with insufficient measurements. Occlusions are handled re-

actively by capturing incrementally adjusted views until the

target surface is successfully observed. Next best views are

selected to be close to the sensor position but the coverage

of scene surfaces from proposed views is not considered.

This paper presents point-based methods to proactively

handle occlusions and consider the coverage of scene sur-

faces when planning next best views with an unstructured

representation. These techniques detect occlusions, optimise

views to avoid occluding points and select views that most

improve surface coverage while travelling short distances.

The resulting reduction in the travel distance and views

required to observe a scene is demonstrated with SEE++.



III. SEE++

NBV planning approaches can typically observe scenes

more efficiently by considering occlusions and scene cover-

age when proposing and selecting next best views. The meth-

ods presented in this paper allow approaches with unstruc-

tured scene representations to proactively consider point-

based occlusions and scene coverage. The advantages of

these techniques are demonstrated with SEE++, an extension

of SEE [2] that uses an unstructured density representation.

SEE aims to observe scenes with a minimum desired

measurement (i.e., point) density, ρ, by evaluating the num-

ber of points within a given resolution radius, r, of each

sensor measurement. The desired density is chosen to attain

the structural detail required for a given application (e.g.,

infrastructure inspection). The resolution radius should be

sufficiently large to robustly handle measurement noise with-

out incurring a significant increase in computational cost.

Points with a sufficient density of neighbouring measure-

ments are classified as core and those without are classified

as outliers. The boundary between completely and partially

observed scene regions is identified by classifying outlier

points that have both core and outlier neighbours as frontiers.

Scene coverage is expanded by obtaining new measure-

ments around these frontier points. Views are proposed by

estimating the local surface geometry around frontiers and

placing a view at a given distance, d, along the surface

normal of each frontier. A next best view is selected from

this set of view proposals to reduce the sensor travel distance.

Occlusions are addressed reactively by applying incremental

view adjustments when a target frontier point is not observed.

Views are selected until there are no more frontier points.

This paper presents techniques for proactively handling

known occlusions when proposing views. Accounting for oc-

cluding points before attempting to observe a frontier reduces

the number of views and sensor travel distance required

to observe a scene. This is the result of requiring fewer

incremental view adjustments to observe frontier points as

known occlusions are avoided before views are obtained.

A frontier point is considered occluded from a view if

there are point measurements within an r-radius of the

proposed sight line from the view position to the frontier

point (Sec. III-A). This is used to detect occlusions for the

τ -nearest view proposals to the current sensor position. Oc-

cluded view proposals are updated to avoid known occlusions

by considering the occluding points within a given occlusion

search distance, ψ, of each frontier point and finding the

furthest sight line from any potential occlusion (Sec. III-B).

Detecting occlusions also makes it possible to con-

sider surface coverage when selecting a next best view

(Sec. III-C). The visibility of frontier points from different

views is captured with a directed graph. This frontier visibil-

ity graph connects each frontier to the views from which it

can be observed. The next best view is chosen from the graph

to have the greatest number of outgoing edges (i.e., visible

frontiers) relative to the distance from the current sensor

position. This constrains the sensor travel distance while

providing high coverage of incompletely observed surfaces.
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Fig. 2. A cross sectional illustration of the occlusion detection approach.
Points (grey dots) that would occlude the visibility of a frontier point (black
dot), f , from a proposed view are found by searching within the resolution
radius, r, of points, p(δ), along the sight line between the view position,
x, and the frontier point up to a given occlusion search distance, ψ. If the
view was proposed to observe the frontier then the vector representing the
sight line, w, is equivalent to the view orientation, w = φ.

A. Detecting Occlusions

A frontier point can only be successfully observed if

sufficient measurements are obtained within its r-radius to

reclassify it as a core point. This requires the sight line

between a view and the frontier point to be free of occlusions.

Occluding points are detected by searching for measurements

within an r-radius of the sight line. A view is considered

occluded if any points are found (Fig. 2).

A view, v = {x,φ}, is defined by a position, x, and an

orientation, φ. The sight line, w, between a frontier point,

fj , and a given view, vi, is defined as the normalised vector

from the frontier point to the view position,

wji =
xi − fj

||xi − fj ||
.

Occlusions are found by searching for measurements

within an r-radius of points along the sight line at an interval

equal to the resolution radius. The set of occluding points

between the view and frontier point is the union of the sets of

neighbouring points within the search radius of each point,

p(δ) = fj + δwji,

O(fj ,vi) :=
⋃

δ

N(P, r,p(δ)) , δ = ζ , ζ + r , . . . , ψ ,

where ψ is the occlusion search distance, ζ is an offset

along the sight line, P is the set of observed points and

N(P, r,p(δ)) is the set of points within an r-radius of the

point p(δ), e.g.,

N(P, r,p) := {q ∈ P | ||q− p|| ≤ r} .

An empty set of occluding points denotes that the frontier

point is visible from the proposed view.

Checking the entire sight line for occlusions is computa-

tionally expensive and sensitive to surface noise. In practice,

it is sufficient to detect occlusions up to a given occlusion

search distance, ψ, from the frontier starting at an offset, ζ,

along the sight line. This search distance is chosen based on

the view distance and structural complexity of the scene.

A suitable offset, ζ, for a frontier point is determined

by considering points along the sight line of its observing

view, vo. Points that exist within an r-radius of the sight

line between the observing view and the frontier could



have occluded its visibility but evidently did not as the

frontier point was observed. Their presence indicates that

points closer to the frontier than this distance are unlikely

to obstruct visibility. This offset is found by performing

an occlusion search, as described above, along the sight

line of the observing view until a point is reached with no

neighbouring measurements.

The occlusions detected with this approach inform the

proposal of unoccluded views and the connectivity of the

frontier visibility graph used for selecting next best views.

B. Proactively Handling Occlusions

A new unoccluded view is proposed for a frontier point

when its current proposed view is classified as occluded. A

suitable view is found by maximising the separation between

a potential sight line and any view direction from which the

frontier point is known to be occluded. This ensures that the

clearest view of the frontier is proposed given the current

knowledge of potential occlusions (Fig. 3).

The view directions from which the frontier point is

occluded are denoted by the relative orientations of occluding

points within the occlusion search radius. These directions

can be represented as points on a sphere by normalising the

distance of occluding points from the frontier. The maximal

separation of a sight line from the occluded view directions

is found by maximising the minimum distance between the

normalised points and an optimised point on the sphere (i.e.,

a maximin optimisation on a sphere).

The use of a spherical projection to preserve the rela-

tive orientation of occluding points while normalising their

distance is inspired by Hidden Point Removal [31]. Points

within the occlusion search distance of the frontier, f , are

projected onto a unit sphere around a central point, c,

Q =

{

p− c

||p− c||

∣

∣

∣

∣

p ∈ N(P, ψ, f)

}

.

The maximin solution is a point on this unit sphere which

maximises the minimum distance to the projected points, Q.

In an idealised scenario with no sensor noise the projection

center is the frontier point. This ensures occluded view

directions are accurately represented on the unit sphere. In

practice it is necessary to offset the projection center from

the frontier to prevent nearby points that are unlikely to

occlude visibility from blocking valid view directions. The

occlusion detection offset is reused as the projection center

as it represents a point approximately clear of surface noise.

A solution to the maximin optimisation on a sphere is the

antipole of a solution to the minimax problem [32] (i.e., a

point on the sphere which minimises the maximum distance

to the projected points). The minimax solution is the center

of the smallest spherical cap containing all of the projected

points [33]. This cap is defined by the pose of a plane

intersecting the sphere. The solution is found by optimising

the orientation of the plane normal, n, and its distance from

the center of the sphere, e.

The plane normal points towards the smaller of the two

spherical caps defined by the plane intersection. It is ini-

tialised using the orientation of the view from which the

f

φ⋆

φo

Fig. 3. An illustration of the approach to propose unoccluded views. Points
(grey dots) within a given radius of the frontier point (black dot), f , are
projected onto a sphere (grey circles) centered on the frontier. The optimal
view orientation, φ⋆, is represented by a point on the sphere (black circle)
which maximises the minimum distance to the projected points. The initial
solution is the orientation of the view which first observed the frontier, φo.

frontier point was first observed, φo, as this sight line is

known to be unoccluded.

The specific optimisation method depends on the distribu-

tion of the projected points. If they are spread over the full

sphere then the smallest containing cap will be larger than a

hemisphere and is found by minimising the distance of the

plane from the sphere center,

(n⋆, e⋆) := arg min
n∈R

3, e∈ [0,1]

e

subject to e ≤ nTn,

e ≥ nTq, q ∈ Q .

In this case the initial distance is one and the initial normal

is the inverse of the observing view orientation, n = −φo.

The minimax solution, s, is given by the inverse unit normal

as this intersects the containing cap at the minimax point,

s = −n̂⋆ ,

where n̂⋆ denotes a unit vector in the direction of n⋆.

If the projected points are contained in less than a hemi-

sphere then the full sphere optimisation converges to a plane

bisecting the sphere (i.e., e⋆ = 0). This indicates the smallest

containing cap is smaller than a hemisphere. It can then

be found by maximising the distance of the plane from the

sphere center,

(n⋆, e⋆) := arg max
n∈R

3, e∈ [0,1]

e

subject to e ≥ nTn,

e ≤ nTq, q ∈ Q .

In this case the initial distance is zero and the initial normal

is the observing view orientation, n = φo. The minimax

solution, s, is given by the unit normal as this intersects the

containing cap at the minimax point, s = n̂⋆.

The maximin solution is the antipole of the minimax

solution. It represents the direction of an unoccluded sight

line starting at the frontier point and pointing towards free

space. This means the orientation of the view proposed to

observe the frontier along this line is equal to the minimax



solution, φ⋆ = s. The view position is then located at a

viewing distance along the maximin solution.

Proactively handling occlusions by detecting occluding

points and proposing unoccluded views of frontiers allows

known occlusions to be avoided. This limits the use of

incremental view adjustments to cases where the visibility

of frontiers is obstructed by unknown occlusions, thereby

requiring fewer views and less travelling to observe a scene.

C. Considering Scene Coverage

The coverage of incompletely observed surfaces is im-

proved by selecting a next best view to observe the greatest

number of frontier points while moving the shortest distance.

The visibility of frontier points from view proposals is

evaluated with occlusion detection and captured in a frontier

visibility graph. The next best view is selected by considering

a set of view proposals close to the current sensor position

and choosing the view from this set that can observe the

most frontiers relative to the sensor travel distance (Fig. 4).

The frontier visibility graph is a directed graph, G =
(M,E), that connects views with frontiers based on their

visibility. Vertices in the graph, m = (v, f), each represent

an associated pair of a frontier point, f , and its corresponding

view proposal, v. An edge, (mj , mk) ∈ E, denotes that the

parent view, vj , can observe the child frontier point, fk.

The graph is updated after new sensor measurements

are obtained and point classifications have been processed.

Vertices representing points that are no longer frontiers

are removed and new vertices are added to represent new

frontier-view pairs. Updates to the graph connectivity (i.e.,

edges) are then computed for a subset of vertices defined by

the visibility update limit, τ . This constrains the computa-

tional cost of updating the graph by only evaluating a local

region from which the next best view is likely to be chosen.

Connectivity is updated for vertices associated with the

τ -nearest view proposals to the current sensor position. All

of the existing outgoing edges associated with these vertices

are removed. New outgoing edges are then added from each

vertex to any vertices whose associated view proposals are in

the set of τ -nearest views to the view proposal of the vertex

and whose frontiers are visible from that view proposal.

A next best view, vi+1, is selected to observe the greatest

number of frontier points while travelling the shortest dis-

tance from the current view. The frontier point associated

with the vertex having the closest view proposal, mc, to the

current view, vi = {xi,φi}, is required to be visible from

the selected view. This is achieved by selecting the next best

view from a vertex set, Mc, containing parent vertices of

incoming edges to mc. Only view proposals that can observe

more frontier points than mc and have a greater number of

outgoing vertex edges (i.e, outdegree) are considered,

Mc := {m ∈M | (m, mc) ∈ E ∧ deg+(m) > deg+(mc)} ,

where

mc = argmin
m∈M

(||x− xi||) ,

and deg+(m) denotes the outdegree of a given vertex, m.

mc

mi+1

xi

φi

Fig. 4. An illustration of the approach for selecting next best views that can
observe the most frontier points while moving the least distance. Vertices
(grey dots) in the frontier visibility graph are connected with edges denoting
visibility (black arrows). The sensor represents the current view. The next
best view is the view associated with the vertex (black circle), mi+1, that
has the greatest outdegree relative to its distance from the sensor position,
xi. It must also be able to observe the frontier point associated with the
vertex (grey circle), mc, whose view is closest to the current sensor position.

The next best view is the view proposal with the greatest

number of outgoing edges relative to the travel distance,

mi+1 = argmax
m∈Mc

(

deg+(m)

||x− xi||

)

.

If none of the evaluated view proposals have a greater

outdegree than mc (i.e., Mc ≡ ∅) then the next best view is

the closest view proposal, mi+1 = mc.

Selecting a next best view with this approach ensures

that the chosen view is both close to the current sensor

position and has the best local coverage of insufficiently

observed surfaces. This allows SEE++ to obtain complete

scene observations using markedly fewer views and shorter

travel distances than SEE and the volumetric approaches.

IV. EVALUATION

SEE++ is compared to SEE [2] and state-of-the-art volu-

metric approaches, (AF, [3]; AE, [4]; and RSV, RSE, OA,

UV, PC, [5]), in a simulation environment on three standard

models, (Newell Teapot [6], Stanford Bunny [7] and Stanford

Dragon [8]), and a full-scale model of the Radcliffe Camera

[9]. The implementations of the volumetric approaches used

to produce the presented results are provided by [5].

These experimental results also correct a mistake in [2].

Those previous results had erroneously used a nonuniform

distribution of view proposals for the volumetric approaches.

Real-world observations of a saltwater crocodile (Crocody-

lus porosus) skull [1] using SEE/SEE++ are also presented.

A. Sensors

The simulation experiments are performed using virtual

sensors defined by a field-of-view, θx and θy , and resolution,

ωx and ωy . The standard models are observed using a

simulated Intel Realsense D435 (θx = 69.4°, θy = 42.5°,

ωx = 848 px and ωy = 480 px). The Radcliffe Camera is

observed with a high-resolution sensor (θx = 60°, θy = 40°,

ωx = 2400 px and ωy = 1750 px). Measurements are

obtained by raycasting the surface mesh of a model with the

virtual sensor. Sensor noise is simulated by adding Gaussian

noise (µ = 0m, and σ = 0.01m) to the observed points.

The real-world experiments are performed with a hand-

held Intel Realsense D435 (θx = 69.4°, θy = 42.5°, ωx =
848 px and ωy = 480 px). The sensor pose is obtained using

a Vicon system to enable the hand-held alignment of views.



Newell Teapot (1m) [6]

Stanford Bunny (1m) [7]

Stanford Dragon (1m) [8]

Radcliffe Camera (40m) [9]

Crocodile Skull [1]

Fig. 5. The top four rows show the performance of SEE++ versus SEE [2] and state-of-the-art volumetric approaches [3–5] in a simulation environment
on three standard models, (Newell Teapot [6], Stanford Bunny [7] and Stanford Dragon [8]), and a full-scale model of the Radcliffe Camera [9]. The
models used are presented in the left-most column. The graphs present the mean performance calculated from one hundred independent trials on each
model. The mean surface coverage axes start at 50% to improve the visual differentiation between the algorithm plots as they reach completion. Left to
right they present the mean surface coverage vs the number of views, the mean overall planning time required and the mean distance travelled by the
sensor. The error bars denote one standard deviation around the mean. The bottom row demonstrates the real-world performance of SEE++ versus SEE [2]
for the observation of a saltwater crocodile (Crocodylus porosus) skull [1] using a hand-held Intel Realsense D435. A ground truth model of the crocodile
skull was not available so the surface coverage metric for these experiments was computed relative to the final pointcloud observation obtained.

Newell Teapot Stanford Bunny Stanford Dragon Radcliffe Camera

Views Coverage Time Distance Views Coverage Time Distance Views Coverage Time Distance Views Coverage Time Distance

SEE++ 22.3 97.1 20.1 29.7 31.5 99.4 46.0 40.9 35.5 97.3 34.0 40.6 27.1 95.3 121 806
SEE 60.0 98.1 4.13 42.8 75.3 99.5 24.7 56.3 78.0 98.0 15.4 56.8 64.5 96.6 74.4 1302
RSV 105 97.6 196 49.6 129 97.6 325 64.8 130 96.1 311 58.2 130 91.4 648 4008
RSE 105 97.8 200 50.7 129 95.1 324 62.7 130 97.2 311 61.1 130 89.7 630 6375
OA/UV 105 98.8 194 37.8 129 99.5 313 45.1 130 98.4 300 43.1 130 93.9 675 1098
PC 105 97.6 198 50.0 129 98.9 320 62.9 130 97.2 306 59.2 130 91.9 622 3272
AF 105 97.6 196 49.9 129 96.4 326 64.3 130 97.1 306 63.8 130 90.7 628 2615
AE 105 97.4 196 48.5 129 97.4 324 59.8 130 97.3 311 58.0 130 91.0 650 1409

Table 1. The mean number of views captured, the mean surface coverage obtained, the mean computation time used and the mean travel distance required
to observe three one-metre standard models (Newell Teapot [6], Stanford Bunny [7] and Stanford Dragon [8]) and a 40 metre model of the Radcliffe
Camera [9], calculated from 100 experiments with SEE++, SEE and state-of-the-art volumetric approaches [3–5]. The best performance values are bolded.
Note that SEE++ obtains equivalent surface coverage using significantly fewer views and less travel distance than all of the other evaluated approaches.



B. Parameters

The standard model simulation experiments use a desired

density of ρ = 146000 points per m3 with a resolution of r =
0.017m. The Radcliffe Camera simulation experiments use a

desired density of ρ = 213 points per m3 with a resolution of

r = 0.15m. The crocodile skull real-world experiments use

a desired density of ρ = 106 points per m3 with a resolution

of r = 0.01m. In all of the experiments SEE++ uses an

occlusion search distance of ψ = 1m and a visibility update

limit of τ = 100 views.

The voxel grid resolution used by the volumetric ap-

proaches in the simulation experiments is equal to the

SEE/SEE++ resolution parameter, r, used for each model.

The view distance in all experiments is set such that the

density of sensor measurements in the viewing frustum is

equal to the desired measurement density, i.e.,

d =

(

3ωxωy
4ρ tan 0.5θx tan 0.5θy

)
1

3

.

The simulation experiments are run one hundred times

per algorithm on each model. SEE/SEE++ are run until

their completion criteria is satisfied. The view limit for the

volumetric approaches on each model is set to the maximum

number of views SEE required to complete an observation.

Potential views for the volumetric approaches are sampled

from a view sphere surrounding the scene as in [3, 5].

Kriegel et al. [4] does not restrict views to a view surface

but we use the implementation provided by [5] which does.

The radius of the view sphere is set to the sum of the view

distance and the mean distance of points in the model from

their centroid. The number of views sampled on the view

sphere is defined as 2.4 times the view limit, as in [5].

In all experiments, a minimum distance, ǫ, between sensor

measurements is enforced to maintain an upper bound on

memory consumption and computational cost. This distance

is set based on the desired density, ǫ =
√

ρ−1. New

measurements are only added to an observation if their ǫ-

radius neighbourhood contains no existing points.

C. Metrics

The algorithms are evaluated using surface coverage, com-

putational time and sensor travel distance as defined in [2].

The registration distance used to compute surface coverage

for the simulation experiments is rd = 0.005m for the

standard models and rd = 0.05m for the Radcliffe Camera.

A ground truth model of the crocodile skull was not avail-

able so the surface coverage metric for these experiments

was computed relative to the final pointcloud observation

obtained. The registration distance used is rd = 0.005m.

V. DISCUSSION

The experimental results (Fig. 5; Table 1) show that

SEE++ consistently outperforms SEE and the evaluated

state-of-the-art volumetric approaches by requiring signif-

icantly fewer views and shorter travel distances to obtain

an equivalent quality of observations. This performance

Fig. 6. A statistical analysis of the view proposal and selection performance
of SEE and SEE++ calculated from the experiments on the standard models
(Sec. IV). SEE++ is 4.5 times more likely to observe a frontier with a
single view than SEE (top graph) and travels less than 3m to observe a
frontier point 77% of the time while SEE only observes a frontier within
this distance 69% of the time (bottom graph).

Frontiers
Observed

Surface
Coverage (%)

SEE 4.49 1.39
SEE++ 6.51 3.29

Table 2. The mean number of frontiers observed and surface coverage
obtained per view for SEE and SEE++ calculated from the one hundred
experiments on each of the standard models.

improvement is achieved while maintaining a considerably

lower computation time than the volumetric approaches.

These results demonstrate the value of proactively han-

dling occlusions and considering scene coverage in unstruc-

tured representations for NBV planning. SEE++ is more effi-

cient as the proposed views obtain greater scene coverage and

are more successful at observing their target frontier points

(Fig. 6; Table 2). The overall computational times of SEE++

are still significantly lower than the evaluated volumetric

approaches despite the relative per-view increase compared

to SEE. This is because proactively accounting for the scene

structure when planning next best views significantly reduces

the number of views required for a complete observation.

The independent contributions of the methods for proac-

tively considering occlusions and scene coverage are evi-

denced by a statistical analysis of the distance travelled,

number of frontiers observed and surface coverage obtained.

These metrics are calculated per frontier point (Fig. 6) and

per view (Table 2) from the standard model experiments.

A complete investigation of the performance improvements

achieved by independently including the proactive occlusion

handling and frontier visibility graph is presented in [34].

Accounting for known occlusions when proposing views

increases the likelihood that a frontier point will be visible

and decreases the number of view adjustments required to

observe it. This improves the efficiency of frontier observa-

tions by reducing the number of views and travel distance

required per frontier (Fig. 6). SEE++ is 4.5 times more likely

to observe a frontier point with a single view than SEE. The

distance travelled by SEE++ to observe a frontier point is



less than 3m in 77% of cases while SEE only observes a

frontier within the same distance 69% of the time.

Selecting next best views which observe the most frontier

points while travelling short distances increases the number

of frontiers observed and surface coverage obtained per view

(Table 2). SEE++ observes 45% more frontier points and

obtains 137% greater surface coverage per view than SEE.

This allows SEE++ to capture significantly fewer views than

SEE while obtaining equivalent scene observations.

VI. CONCLUSION

This paper presents proactive methods for handling occlu-

sions and considering scene coverage with a NBV planning

approach that uses an unstructured representation. The occlu-

sion handling technique detects occluded views and applies

an optimisation strategy to propose alternative unoccluded

views. The frontier visibility graph encodes knowledge of

which frontiers are visible from proposed views and is used

to select next best views that most improve scene coverage.

The value of these presented techniques is demonstrated

by extending SEE to create SEE++. Proactively accounting

for known occlusions when proposing views increases the

likelihood that target frontier points will be successfully

observed without requiring incremental view adjustments.

Assessing the visibility of frontier points from proposed

views when selecting a next best view improves the scene

coverage attained from each view while retaining relatively

short travel distances between views. A significant improve-

ment in observation efficiency is achieved by integrating

these methods with an unstructured scene representation.

Experimental results demonstrate that SEE++ outperforms

SEE and the evaluated volumetric approaches by requiring

fewer views and less travelling to obtain an equivalent quality

of observations. SEE++ uses greater computation times than

SEE but retains lower times than the volumetric approaches.

We plan to use SEE++ for observing small indoor scenes

using an RGB-D camera affixed to a robotic arm and larger

outdoor scenes with a LiDAR sensor mounted on an aerial

platform. Information on an open-source version of SEE++ is

available at https://robotic-esp.com/code/see.
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