
Blinded by the Light: Exploiting the Deficiencies of a Laser Rangefinder for Rover
Attitude Estimation

Jonathan D. Gammell, Chi Hay Tong, Timothy D. Barfoot
Institute for Aerospace Studies

University of Toronto
Toronto, Ontario, Canada

{jon.gammell, chihay.tong, tim.barfoot}@utoronto.ca

Abstract—This paper presents a method to exploit inher-
ent deficiencies in the sensing technology of a SICK laser
rangefinder to detect sun positions from 3D lidar scans. Given
the common use of SICK lidars on mobile robots, this method
enables sun sensing for some existing configurations without
requiring additional hardware or configuration costs. Adding
sun sensing to mobile rovers has clear advantages; for example,
sun vectors can be combined with an inclinometer to calculate
rover orientation in an absolute reference frame and used to
improve pose estimates.

The proposed sun sensing technique was verified using a
SICK LMS-511 lidar mounted on a Schunk panning unit
through two separate experiments. In the first experiment, the
outputs of both our algorithm and a Sinclair Interplanetary SS-
411 digital sun sensor were compared to solar ephemeris data
over an entire day. While the SS-411 has higher accuracy, the
experiment showed that our lidar-based method has acceptable
accuracy and a larger field of view (FOV) that covers the entire
sky. In the second experiment, our sun sensing algorithm was
used with an inclinometer to calculate the absolute orientation
of the rover periodically during a traverse. This information
was used with wheel odometry to estimate rover poses over
the entire traverse, yielding more accurate results than wheel
odometry alone. When including lidar-based sun measure-
ments, the average estimate error over the entire traverse was
only 8.4 metres, an 88% improvement over wheel odometry
(70.4 metres). The resulting final position estimate error was
22.8 metres, or 2.76% of total distance travelled.

Keywords-lidar; sun sensing; robotics; attitude estimation;
pose estimation; rover odometry

I. INTRODUCTION

Relative wheel odometry is the cheapest and simplest
method available for estimating mobile robot position; how-
ever, without some form of external correction the estimate
error grows unbounded with distance travelled. To limit
error growth, odometry measurements are commonly supple-
mented with periodic absolute corrections. Common meth-
ods include using prior knowledge about the environment
(e.g., localization against a map) or existing infrastructure
(e.g., global positioning system (GPS)). It has been shown
that the more accurate visual odometry (VO) techniques
also show significant improvements with periodic absolute-
measurement corrections [1].

(a)
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Figure 1. The ASRL Clearpath Husky A200 configured with a SICK
LMS-511 scanning lidar (a) on a Schunk panning unit (b) and a Honeywell
inclinometer (not shown) during the rover odometry experiment analyzed
in Section IV.

Sources of localization correction are limited when de-
ploying systems to unknown or GPS-denied environments.
One common technique in planetary exploration is the use
of celestial observations to calculate rover orientation or
position in a global frame. Volpe [2] demonstrated such a
system on the Rocky 7 rover during development for the
Mars Exploration Rover (MER) program. Using a mast-
mounted sun sensor to measure the azimuth and eleva-
tion of the Sun and an inclinometer to measure gravity,
the algorithm corrected wheel odometry measurements to
achieve an average error of 6% as a function of distance
over a 1 kilometre traverse. Development of this technique
continued in the MER program [3], with a final design
that used the onboard panoramic cameras to image the
Sun [4]. Lambert et al. [1] similarly used a sun sensor
and inclinometer in the VO pipeline, proposing methods
to both improve the estimate accuracy and to decrease the
computational burden. Gammell et al. [5] have demonstrated
that similar techniques can be applied to star trackers to
correct wheel odometry at night.

This paper presents a method to calculate sun vectors
using 3D scanning lidars commonly found on rover plat-
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Figure 2. Reflectivity image showing a sun blob (a, green) and the extended inconsistent intensity measurements (b, blue). Dimensions are 360◦×190◦.

forms and use them to improve pose estimates. The idea
of using existing imaging sensors as sun detectors is not
new; for example, the MERs articulated their panoramic
cameras to search for and locate the Sun, using the resulting
sun positions to update rover heading and point their com-
munication antenna [4]. Presently, 3D scanning lidars are
used in existing systems as sensors for obstacle detection or
mapping [6], [7], as well as for lighting-invariant VO [8]–
[10]. The proposed lidar-based technique would allow them
to also operate as sun sensors in some popular configurations
[11] without interfering with existing sensing operations or
creating significant computational overhead.

Integrating sun sensor measurements into a system with-
out introducing additional error or bias requires careful
calibration between the sensor and the odometric frame.
The work by Volpe [2] demonstrated the importance of
calibration as well as the difficulty in assuring that it
is maintained in real systems. If a sensor could provide
both relative odometric measurements and periodic absolute
corrections, it would remove a significant source of error.
This paper suggests that, if coupled with lidar-based VO and
an inclinometer, this could be accomplished with a 3D lidar.
The result would be a system that is capable of providing
both relative odometric estimates and absolute orientation
corrections on existing platforms with minimal intersensor
calibration.

This paper also suggests that this work could extend to
the problem of large-scale, outdoor simultaneous localization

and mapping (SLAM). It has been shown that SLAM results
can be improved with occasional absolute measurements
(e.g., GPS) [12]. The proposed sensing method would allow
a single 3D lidar to provide both dense point clouds for
mapping as well as strong prior estimates on orientation to
aid in their alignment.

The remainder of this paper is structured as follows. The
paper begins by discussing the effect of the Sun on the
SICK LMS-511 and presenting our simple method to detect
the Sun (Section II). This is followed by an experimental
validation that compares the method’s performance to both
solar ephemeris data and a Sinclair Interplanetary SS-411
digital sun sensor (Section III). The results show that while
the lidar method is slightly less accurate than the SS-411
at detecting the azimuth and elevation of the Sun and has
a lower sampling rate, it does have a larger field of view
(FOV) the covers the entire sky. The paper also presents
example results of using the lidar-detected sun vectors to
correct wheel odometry estimates (Section IV), and finally,
some thoughts on future work to extend this novel sensing
technique (Section V).

II. LIDAR-BASED SUN DETECTION

Lidars (LIght Detection And Ranging) are active sensors
that detect the location of objects by emitting light at a
known frequency and measuring the return-trip time of
flight. Scanning models use mirrors or multiple light sources
to image an entire scene, giving positions in a spherical
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Figure 3. The azimuth of the Sun versus time calculated by the SICK
LMS-511 lidar (blue), the Sinclair Interplanetary SS-411 digital sun sensor
(red) and solar ephemeris data (black). Note that the SICK has a larger
field of view. The lack of SS-411 data from 14:13–14:37 EST is the result
of a rover shadow that occludes the sensor at that orientation.

coordinate system centred at the sensor. Most lidars also
measure the intensity of the returned light, which can be
used to infer the reflectivity of a measured object.

SICK lidars are popular 2D scanning lidars in robotics.
These experiments used a SICK LMS-511 lidar mounted
on a panning unit (the SICK). The lidar has a range of
up to 80 metres and uses a spinning mirror to scan a
905 nanometer laser in one direction over a 190◦ linear FOV
at 1/6◦ spacing. It measures the range, the detection angle,
and the returning light intensity. By mounting the sensor
on a Schunk panning unit, the SICK can take 3D scans by
panning up to 360◦, giving azimuth, elevation, range and
intensity to every measured point (Figure 1).

This configuration has been successfully used for 3D
worksite mapping in planetary analogue missions [13], [14].
In the process of these experiments, it was discovered that
the Sun appeared as a high-intensity, zero-range artifact in
outdoor scans. Further investigations showed that the Sun
emits enough light at the 905 nanometer wavelength to
saturate the detector of the SICK as it passes over the
Sun. This measures as an instantaneous return time, (i.e.,
zero range) and a maximum intensity. As the detector has
a nonzero recovery time, the zero range, high intensity
readings continue for a short number of measurements after
passing over the Sun, resulting in a sun blob. This can
be visualized by plotting the data as a reflectivity image
(Figure 2). It is interesting to note that even after the sensor
desaturates, the reflectivity data remain affected by their
exposure to the Sun. The sensor underestimates intensity
compared to similar objects, as illustrated by the dark bands
below the sun blob in the reflectivity image.

Given a 3D lidar scan, we can calculate the position of
the Sun by searching for these clusters of zero-range, high-
intensity measurements. The sun blob can be converted to
a sun vector or to azimuth and elevation using knowledge
of the hardware configuration. In our configuration (as the
SICK scans from top down and remains saturated after
moving past the Sun) the Sun is approximately located at
the top of the sun blob in elevation, and in the middle in
azimuth.
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Figure 4. The elevation of the Sun versus time calculated by the SICK
LMS-511 lidar (blue), the Sinclair Interplanetary SS-411 digital sun sensor
(red) and solar ephemeris data (black). Note that the SICK has a larger
field of view. The lack of SS-411 data from 14:13–14:37 EST is the result
of a rover shadow that occludes the sensor at that orientation.

III. SUN-SENSING PERFORMANCE

To validate the accuracy of the proposed technique, sun
vectors from 3D lidar scans acquired by the SICK were
compared to simultaneously captured data from a Sinclair
Interplanetary SS-411 digital sun sensor (the SS-411) and
solar ephemeris data (Figures 3, 4). The data were collected
at the University of Toronto Institute for Aerospace Stud-
ies (UTIAS) campus in Toronto, Canada (43◦ 46′ 55.1′′N,
79◦ 27′ 55.9′′W) on March 14, 2013, a clear, cloudless day.
A stationary rover equipped with the SICK and a SS-411
was used to track the Sun’s traverse through the sky, starting
when it first rose at 06:40 Eastern Standard Time (EST) and
continuing until the Sun was hidden by nearby buildings
at 17:50 EST. The SICK performed a full 360◦ scan every
60 seconds, while the SS-411 recorded the sun position at
a frequency of 1 Hz for the entire duration, except for a
period from 14:13–14:37 EST when the SS-411 was in the
shadow of the rover-mounted GPS antenna. To compare the
different sensing methods to the solar ephemeris data, the
rotations from the sensor frames to the ephemeris frame
were estimated from a calibration dataset. This allowed the
measured sun vectors to be rotated into the ephemeris frame
and then converted to azimuth and elevation.

A. Solar Ephemeris Calibration

Each individual sensor measures the position of the Sun
in its local frame. The rotation between a sensor frame
and the ephemeris frame, CES , can be calculated from a
dataset consisting of M unit sun vectors from the sensor,
uSi

, and the solar ephemeris data, uEi
. The best estimate of

the rotation from the sensor to ephemeris frame, C∗ES , can
be written as a classic Wahba problem [15] determining the
rotation matrix that minimizes a cost function,

C∗ES := argmin
CES

{J (CES)} , (1)

J (CES) :=
1

2

M∑
i=1

||uEi
− CESuSi

||2 .
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Figure 5. Measurement error, in degrees, of the SICK-based sun sensor
(blue) and a SS-411 digital sun sensor (red) as calculated from solar
ephemeris data.

For our experiment, a singular value decomposition (SVD)
method [16], [17] was used to calculate the least-squared
solution to (1). The calibration vectors are columnated into
matrices, and multiplied together,

W :=
[
uE1

uE2
. . . uEM

] [
uS1

uS2
. . . uSM

]T
.

The result is then factored,

USVT := W,

where U and V are unitary matrices and S is rectangular
diagonal matrix, as per SVD. The optimal estimate of the
rotation is then given by,

C∗ES = U

1 0 0
0 1 0
0 0 |U| |V|

VT .

B. Results

Over the entire day, 637 sun vectors were calculated by
the SICK from 660 scans. When evaluating the SICK and
SS-411 to the solar ephemeris data, we compared only data
occurring in the FOVs of both sensors. While the SICK can
detect the Sun over the entire sky, the SS-411 has a ±70◦

FOV centred about the vertical axis. There are 483 SICK
measurements with a corresponding SS-411 measurement
within 1 second.

This set of paired measurements was split into a cali-
bration set of 50 measurements used to estimate the rotation
between each sensor and the solar ephemeris data, and a test
set of 433 measurements used to evaluate the performance
of the sensors (Table I, Figure 5). The results show that the
SICK has less variance in elevation than in azimuth with bias
in both measurements and that the SS-411 is more accurate.

The elevation performance of the SICK depends on the
method used to convert the sun blob into a sun vector and the
scanning resolution of the lidar. Better performance may be
realized from more advanced sun blob processing techniques
and higher scan resolution. The azimuth performance of the
SICK depends on the synchronization between the lidar and
the panning unit. Since the pan angle of a lidar measurement
is calculated from the lidar and the panning unit timestamps,
improving the synchronization between these two clocks
could improve performance [18].

Table I
MEASUREMENT ERROR, IN DEGREES, OF THE SICK-BASED SUN

SENSOR AND A SS-411 DIGITAL SUN SENSOR AS CALCULATED FROM
SOLAR EPHEMERIS DATA.

Azimuth Elevation
Mean St. dev. Mean St. dev.

SS-411 0.031 0.086 -0.011 0.081
SICK -0.106 0.875 0.199 0.243

IV. ODOMETRY CORRECTIONS

To demonstrate the value of the lidar-based sun sensing
technique, the Clearpath Husky A200 was equipped with the
SICK and an inclinometer and driven 826 metres through the
UTIAS campus while acquiring 15, 360◦ lidar scans (Figure
6). At each scan location, the sun vector was calculated
from the 3D lidar scan and combined with inclinometer
measurements and solar ephemeris data to estimate the
absolute orientation of the rover. These periodic orientations
were used as corrections to the pose-estimation problem
using a batch estimator.

A. Batch Optimization

The absolute orientation measurements from the Sun were
used to improve the relative motion from the wheel odometry
in a batch optimization formulation [5]. Expressing the rela-
tive odometric measurements as 6 degree-of-freedom (DOF)
transformation matrices, T̃k,k−1, with associated covari-
ances, Uk,k−1, and the absolute orientation measurements as
3 DOF rotation matrices, C̃k,0, with associated covariances,
Pk,0, we wish to find the set of optimal estimates whose
resulting measurement errors, δεk,k−1 and δψk,0, minimize
a cost function,

J :=
1

2

∑
k

(δεTk,k−1U
−1
k,k−1δεk,k−1 + δψTk,0P

−1
k,0δψk,0

)
.

(2)

The measurement errors are defined in terms of the estimate,
Tk,0, as

e−δε
�
k,k−1 := T̃k,k−1Tk−1,0T

−1
k,0,

e−δψ
×
k,0 := C̃k,0C

T
k,0,

where Tk,0 is a 4 × 4 transformation matrix consisting of
a rotation from 0 to k, Ck,0, and translation from 0 to k
expressed in frame 0, rk00 ,

Tk,0 :=

[
Ck,0 −Ck,0r

k0
0

0T 1

]
.

The operator, (·)�, is defined for a 6×1 vector, w, as

w� =

[
u
v

]�
:=

[
v× −u
0T 0

]
,
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Figure 6. The odometry dataset collected at UTIAS consisting of wheel
odometry pose estimates (green) and sun vectors from lidar scans (black).
Arrows serve to illustrate the direction of the traverse.

and the operator, (·)×, is defined for a 3×1 vector, u, as

u× =

u1u2
u3

× :=

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 .
The minimum of (2) can be found iteratively with Gauss-
Newton. We approximate the current measurement errors as
a function of the previous iteration’s errors, δεk,k−1 and
δψk,0, as

δεk,k−1 ≈ δεk,k−1 −Hk,k−1Bk,k−1δx,

δψk,0 ≈ δψk,0 −GBk,0δx,

with

Hk,k−1 :=

[
1 −

(
Tk,0T

−1
k−1,0

)�]
,

G :=
[
0 1 0 0

]
,

Bk,k−1δx :=

[
δπk,0
δπk−1,0

]
.

Where 1 as the identity matrix, and the operator, (·)�, is
defined for any transformation matrix, T, as

T� =

[
C −Cr
0T 1

]�
:=

[
C Cr×

0 C

]
.

The projection matrix, Bk.k−1, selects the perturbations,
δπk,0 and δπk−1,0, for the k and k − 1 poses from the
entire state, δx. New estimates can then be expressed in
terms of perturbations on the previous estimates, Tk,0, as

Tk,0 = e−δπ
�
k,0Tk,0.

The process is repeated until a suitable convergence criterion
is reached.
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Figure 7. Estimates produced from wheel odometry corrected with lidar-
based sun vectors (blue) plotted with the DGPS groundtruth (black), and
the wheel odometry (red). Dots indicate the locations at which 3D lidar
scans were acquired to measure absolute orientation from the Sun.

B. Results

The batch estimator with lidar-based sun measurements
was compared to groundtruth calculated from post-processed
differential GPS gathered by an onboard receiver. The first
100 metres of the traverse were used to align the groundtruth
to the local rover frame. As expected, the sun-vector-
corrected method provided a more accurate estimate than
wheel odometry alone (Figure 7). The average estimate error
over the traverse was 8.4 metres, an 88% improvement over
the average wheel odometry error of 70.4 metres (Table II).
The final position error was 22.8 metres, or 2.76% of total
distance travelled.

V. DISCUSSION & FUTURE WORK

Orientation errors cause uncorrected pose estimates to
grow superlinearly without bound. Providing frequent and
accurate orientation corrections can limit this to linear
growth [1]. Therefore, it is expected that the results pre-
sented in Section IV can be extended to any system using a
3D lidar and requiring accurate pose estimates, including VO
and SLAM. Doing so would leverage hardware commonly
found on existing platforms for mapping and obstacle de-
tection into a simple, yet improved, estimation system that
requires minimal intersensor calibration.

While the presented method was demonstrated and eval-
uated on a SICK LMS-511 lidar, the technique should be
extensible to other makes and models. The presented method
could be adapted with at most minor modifications; the
method of extracting measurements from sun blobs may
have to be modified to reflect different scanning mecha-
nisms. The only requirements are that the lidar must use
a wavelength strongly emitted by the Sun and also measure
the intensity of the returning light. Other popular lidars in
robotics that may potentially work include models made by
Velodyne and Hokuyo.
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Figure 8. Position estimate error versus distance travelled showing
that using lidar-based sun vectors to correct wheel odometry significantly
reduces error. Dotted lines indicate the locations at which sun vectors were
acquired from 3D lidar scans to provide absolute orientation corrections.
Note the difference in scale between the wheel odometry and sun-vector-
corrected estimates.

With an inclinometer and solar ephemeris data, a lidar
could be used to provide both relative odometry estimates
through lidar-based VO [8]–[10], and absolute orientation
corrections from celestial calculations. A similar configura-
tion could also be used in SLAM problems to provide both
dense point clouds for mapping as well as strong estimates
on prior orientation to aid in their alignment.

VI. CONCLUSION

This paper presents a novel method to detect the Sun
using a common scanning 3D lidar. The presented technique
is simple, accurate, and computationally inexpensive. The
required hardware is common on many systems and the
adoption of the presented technique does not interfere with
existing sensing operations or require additional sensors
or associated calibrations. Experiments showed the lidar
method to have lower accuracy and measurement frequency
than a digital sun sensor but an expanded FOV.

With only one additional sensor, an inclinometer, the
technique can be expanded to provide full rover attitude
estimates from solar ephemeris data. These attitude estimates
can be used to improve the accuracy of pose estimates in
a wide range of applications, including VO and SLAM.
The paper presents an example of using sun vectors from
a SICK LMS-511 mounted on a Schunk panning unit to
correct wheel odometry on a dataset of over 800 metres.
The resulting estimate had an average error of 8.4 metres, a
88% improvement over basic wheel odometry (70.4 metres),
and a final position error of 22.8 metres, or 2.76% of total
distance travelled.

Table II
ERROR IN METERS, ε, OF THE WHEEL ODOMETRY (WO) AND

LIDAR-BASED SUN-VECTOR-CORRECTED (WO + SICK) ESTIMATES
EXPRESSED IN THE LOCAL ROVER FRAMES

WO WO + SICK
Mean Max. Final Mean Max. Final

||ε|| 70.4 140.9 102.8 8.4 22.8 22.8
εx 59.2 113.9 101.4 -1.5 12.9 -12.9
εy 30.9 83.4 16.7 3.8 18.8 18.8
εz 1.1 2.6 1.6 -0.9 2.4 -1.7
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