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Abstract—The success of sampling-based planning
algorithms has made their design and evaluation a
popular area of research. Evaluating different algo-
rithms is complicated due to their use of quasirandom
sampling. Experiments and analysis must be designed
to calculate probabilistic performance from a finite
number of individual trials. This requires careful ex-
perimental design and statistical analysis.
Planner Developer Tools (PDT) is a C++ project

to make it easier to test, evaluate, and analyze
sampling-based planners across problem domains. It
provides tools to evaluate Open Motion Planning
Library (OMPL) algorithms fairly and also a number
of abstract scenarios that isolate specific challenging
aspects of the planning problem during algorithm
development. It is the result of almost 10 years
of development and is available open source to the
sampling-based motion planning research community.

I. Introduction
Sampling-based algorithms are powerful approaches to

solve motion planning problems [1–3]. They are used on
different problems in a variety of disciplines, including
robotics. Algorithms are often tailored to the specific
nature of the target problem and their design remains a
popular area of research.

An important part of designing algorithms is comparing
their performance on target problems to that of exist-
ing approaches. Measuring this performance accurately
and fairly is complicated by sampling-based planners’
use of pseudo- or quasirandom sequences which makes
performance on each individual run dependent on the
specific sequences of samples. Planners instead have to
be evaluated across multiple independent runs through
statistical measures of performance.

A number of tools exist to facilitate using and evaluat-
ing sampling-based planners. The Open Motion Planning
Library (OMPL) [4] provides high-quality reference imple-
mentations of major sampling-based planning algorithms.
The associated PlannerArena and OMPLBenchmarking
[5] define data formats to record experiments and plan-
ner performance in OMPL and tools to visualize the
performance of different algorithms. The Benchmark
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for Autonomous Robot Navigation (BARN) [6] dataset
focuses on evaluating the full navigation stack of ground
robots with metrics to quantify problem difficulty and
simulated benchmarks. Bench-MR [7] focuses on nonholo-
nomic ground robots and includes tools for evaluating
planning performance of algorithms in OMPL and other
planning libraries. MotionBenchMaker [8] focuses on robot
manipulation and both provides methods to generate
realistic planning problems and a dataset of problems for
common manipulation robots. Robowflex [9] simplifies
the design and evaluation of motion planner algorithms in
systems using MoveIt [10], ROS [11], or other libraries and
also provides a number of tools to evaluate and visualize
planners.

Planner Developer Tools (PDT) is an open-source C++
project designed to facilitate running fair, reproducible,
and statistically meaningful comparisons of anytime and
nonanytime OMPL planning algorithms in both single-
and multiquery settings. It simplifies the evaluation of
sampling-based planners with an experimental design that
includes a number of best-practices for algorithm bench-
marking. It also defines and implements a configuration
manager that documents all planner and problem settings
to support reproducible experiments.

PDT also simplifies planner evaluation by processing
the raw performance measurements and performing sta-
tistical analysis (Fig 1). Measurements of independent
runs are synchronized to provide data for statistics as
a function of computational time. The data is analyzed
using nonparametric statistical analysis and presented in
an autogenerated report or can be analyzed independently
with third-party tools.

PDT was designed for motion planning developers but
may also be helpful for practitioners evaluating algorithms
on specific problems of interest in a repeatable and statis-
tically meaningful way. It includes a number of abstract
planning scenarios that isolate specific aspects of the
planning problem in n-dimensions (Fig 2) and an interface
to visualize the algorithmic process on these problems
in 2D. It also interfaces to problems defined in external
libraries and includes an interface to the Open Robotics
Automation Virtual Environment (OpenRAVE) [12] and
has been used with the Robotic AI (RAI) environment
(https://github.com/MarcToussaint/rai).

PDT has been developed while designing planning
algorithms and was used for the experimental results
in the associated publications [13–23]. Full details are
available at https://robotic-esp.com/code/pdt/.
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Fig. 1. An illustration of planner performance metrics extended from [21]. A planner is run multiple independent times on a given planning
problem creating individual measures of solution cost as a function of computational time (a). The resulting statistics of these experiments
are visualized as a histogram of initial solution times and the associated empirical distribution function (b, top), the initial solution cost
versus computational time and the associated median (b, middle), and the median solution cost as a function of computational time (b,
bottom). These statistics can be summarized for publication as the percent of runs solved as a function of time (c, top) and the median
initial solution cost and the median solution cost as a function of time (c, bottom). These statistical measures include both successful and
unsuccessful trials and have appropriate nonparametric confidence intervals that make no assumptions about the distribution of results.
Note that calculating the median solution cost as a function of time requires interpolating individual measurements to common times.

II. Planner Developer Tools (PDT)

PDT is middleware that sits between OMPL and the
planning problem of interest (e.g., simulator, etc.) to ana-
lyze planner performance as a function of computational
time in a repeatable and reproducible way. It does this
by providing:
1) Configuration management for repeatable and repro-

ducible experiments (Section II-A).
2) Experimental design to benchmark nondeterministic

planners fairly on single- and multiquery problems
(Section II-B).

3) Data processing of asynchronous measurements from
individual trials and calculation of nonparametric
statistical measures of performance as a function of
computational time (Section II-C).

4) Abstract planning scenarios with visualization and
the ability to interface with OpenRAVE and other
simulators or libraries (Section II-D).

PDT also automatically generates reports that fully
document the tested planners and problem settings and
the resulting statistical performance in publication-ready
plots using LATEX2ε and PGF/TikZ.

A. Configuration Management
An important part of repeatable and reproducible

experiments is clear and complete documentation of
experimental settings. PDT uses a JSON-based config-
uration manager to define the settings for the planner,
problem, and all other aspects of OMPL (e.g., collision
detection resolution, etc.). The configuration manager
provides defaults for supported planners and tracks every
configuration query and documents all accessed key-value
pairs. This separates default settings from the source code

and provides complete documentation of the experiment,
including settings that may be unknown to the end user.
It can even document the specific pseudorandom seed
for the random number generator when used with the
appropriate publicly available branch of OMPL.
B. Experimental Design
Timing planning algorithms in a fair and meaningful

way on modern consumer computers is difficult. PDT
provides an experimental design for both single- and
multiquery planning problems. It includes fixes to timing
irregularities previously encountered in standard libraries
and best-practices such as randomizing the order of
planners and timing planner construction and setup. This
both makes it easier for future researchers to gather
meaningful comparisons and evaluations and can serve as
a repository of best practices in the motion planning field.
C. Statistical Analysis
Planner performance is quantified by statistical mea-

sures of solution time and cost and PDT facilitates these
calculations for both anytime and nonanytime planners in
single- and multiquery problems. Statistical measures as a
function of computational time require synchronizing the
measurements of each independent run to common times
by interpolating between the two closest measurements.
These processed data are used to calculate percent of
trials solved, median initial solution costs, median initial
solution times, and median solution cost as a function
of computational time for each planner with appropriate
nonparametric confidence intervals (Fig. 1). Medians allow
these metrics to include unsolved trials in a meaningful
way by treating these times and/or costs as infinite.
Multiquery performance is evaluated for both individual
queries and as a function of the planning query.
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Fig. 2. An illustration of some abstract planning scenarios provided by PDT, with obstacles in black and the start and goal states as
green and red dots, respectively. The scenarios include two-homotopy classes with a narrow gap (a), a multiroom setting with a circuitous
solution (b), start and goal enclosures (c), regularly repeating obstacle creating many homotopy classes (d), and randomly generated
obstacles (e). All scenarios are extendable to n-dimensions and are defined by configurable parameters.

D. Abstract Problems and OpenRAVE
The general planning problem is challenging in many

unique ways. PDT provides simple abstract scenarios that
isolate a number of the specific challenges of planning,
including narrow passages, enclosures, and multiple ho-
motopy classes (Fig. 2). These simple scenarios can be
used to understand how a planning algorithm performs on
specific challenges through statistical analysis or by using
the provided interface to visualize the incremental search
process. PDT can also provide statistical analysis of
planning problems defined in external libraries, including
OpenRAVE through the provided interface, and has been
previously used with RAI.

III. Conclusion
PDT is an open-source C++ project to facilitate fair

and reproducible evaluations of anytime and nonanytime
OMPL planning algorithms. It provides tools to simplify
experimental design, manage problem and planner con-
figuration, calculate meaningful nonparametric statistical
measures of performance, generate publication-ready
figures, and visualize the planning process. It can be used
with the provided abstract scenarios that isolate specific
aspects of the planning problem and on problems defined
in OpenRAVE or other external libraries. More details
are available at https://robotic-esp.com/code/pdt/.
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