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Abstract—This paper develops a practical framework for es-
timating rover position in full-dark conditions by correcting
relative odometric estimates with periodic, absolute-attitude
measurements from a star tracker. The framework is validated
using just under 2.5 kilometres of field data gathered at the
University of Toronto’s Koffler Scientific Reserve at Jokers
Hill (KSR) comprised of both wheel odometry and lidar-based
Visual Odometry (VO). It is shown that for the wheel odom-
etry solution, the final estimate of rover position was within
21 metres of the groundtruth as calculated by a differential GPS
receiver, or 0.85% of the total traverse distance. When the star
tracker measurements are artificially limited to occurring ap-
proximately every 250 metres, the algorithm still performs well,
giving a final position error of 75.8 metres or 3.0%. Preliminary
results to replace wheel odometry with lidar-based VO for the
development a full-dark visual solution are also presented. The
lidar-based VO solution is shown to be capable of outperforming
wheel odometry, but more work is required to develop methods
to handle the variety of terrain conditions encountered.
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1. INTRODUCTION
Accurately estimating the position of rovers in the absence of
a Global Positioning System (GPS) is an ongoing challenge
in robotics. The additional weight and power limitations
of extraterrestrial operations, such as during missions to the
Moon or Mars, further complicate this problem. The simplest
solution, wheel odometry, is computationally inexpensive and
readily available but is prone to wheel slip on loose terrain
and during turns, resulting in poor orientation estimates. A
common solution has been to supplement wheel odometry
with periodic, absolute-orientation measurements.

Figure 1. The ASRL Clearpath Husky A200 equipped with
a laser rangefinder, star tracker, and inclinometer.

Volpe [1] augmented wheel odometry with a sun sensor to
calculate rover heading and reported a cross-track error of 6%
of distance travelled over a 1 kilometre traverse. Bakambu et
al. [2] used a fibre-optic gyroscope and an inclinometer to
calculate heading and correct the wheel odometry estimates
of autonomous mining vehicles through a Kalman Filter.
Baumgartner et al. [3] and Balaram [4] discussed adding a
sun sensor to inertial navigation sensors and wheel odometry
for long-range Martian autonomy. Lamon and Siegwart [5]
developed algorithms to fuse inertial navigation systems with
wheel odometry and demonstrated their algorithm’s ability to
traverse 3D obstacles.

Alternatively, missions such as the Mars Exploration Rovers
(MERs) and the Mars Science Laboratory (MSL) have em-
ployed stereo Visual Odometry (VO) [6] to estimate relative
motion in place of wheel odometry. VO does not suffer
from wheel slip and is quite accurate over short-to-medium
distances even on loose terrain [7]; however, the error grows
super-linearly over kilometer-long traverses [8].

As with wheel odometry, previous VO work has focused on
incorporating attitude measurements from a sun sensor and
an inclinometer to correct for systematic errors [9], [10].
These additional sensors come at a near-negligible extra
mass, power, and computational cost to the rover platform
while exploiting the existing dependence of the stereo camera
on the presence of the sun as a light source. Lambert et al.
[11] demonstrated both continuous and periodic corrections
from the sun sensor and inclinometer, reporting errors of less
than 1% of distance travelled over a 10 kilometre data set.
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Figure 2. The rover sensor payload with (a) a SICK lidar, (b)
an inclinometer, and (c) a Sinclair Interplanetary star tracker.

All these algorithms depend on the sun (sun-sensors) or well-
known magnetic fields (digital compasses) for their absolute
heading. Recently, there has been an increase in scientific
interest around the lunar poles, specifically the South Pole.
It is hypothesized that volatiles, such as water ice, may be
trapped in permanently shadowed craters [12] and that a rover
mission could be used to investigate. The lack of atmosphere,
combined with low sun elevation, create an environment at
the poles where sensors would be exposed to both direct
sun illumination and complete darkness. This is a difficult
environment for passive stereo cameras or sun sensors, and
the magnetic field is insufficient for digital compasses.

We can address these issues by replacing the stereo camera in
VO with lighting-invariant sensors; possible systems include
actively-illuminated stereo cameras [13], [14] and lidar for
VO [15], [16]. These systems have similar biases and errors
as stereo-camera VO, and similarly benefit from absolute-
heading corrections.

One system that is analogous to the sun sensor (working in
full-dark conditions without relying on magnetic fields) is a
star tracker. Star trackers calculate absolute attitude in three
dimensions from celestial measurements. Sigel and Wetter-
green [17] developed simulations that used a star tracker to
calculate rover position for a lunar rover, but not full heading.
Xiaolin and Jiancheng [18] developed algorithms for calcu-
lating rover position from star elevation measurements and
tested them in hardware-in-the-loop simulations.

In this paper, we present a star-tracker-based attitude correc-
tion algorithm for use with full-dark odometry. This paper
provides the concept, theory, and the results from outdoor
experiments using a real rover (Figure 1), inclinometer, and
star tracker (Figure 2). To the best of the authors’ knowledge,
this represents the first time a star tracker has been deployed
on a real rover. The data consists of 7 hours of rover
operations and just under 2.5 kilometres of driving (Figure
3), with a range of elevations (Figure 4). The estimates from
wheel odometry and VO are compared with and without the
star tracker measurements. This algorithm is suitable for
odometry generated from wheel encoders, active stereo VO,
lidar-based VO, or other sources of odometry that do not
require the presence of ambient light.

This paper is structured as follows. Section 2 presents
the algorithms used to calculate absolute heading, as first

Figure 3. The path taken by the rover as calculated by post-
processed DGPS.

presented by Enright et al. [19], and calculates the optimal
estimate of the global rover positions. Section 3 presents the
methods used to collect the experimental data while Section
4 presents the results of the proposed algorithms on the col-
lected data. Section 5 discusses the challenges encountered
and the ongoing work to address them.

2. ALGORITHM
This section is divided into two parts. In the first section
we present the algorithm to calculate rover attitude from
star tracker measurements and in the second we provide the
batch optimization formulation to combine relative odometry
measurements with absolute orientation measurements. For
generality, we assume that the odometry measurements are
6 Degree-of-Freedom (DOF) transformation matrices, and
the orientation measurements are 3 DOF rotation matrices.
The estimate is a batch optimization completed at the end
of the traverse, but it could also be carried out in an online
filtering mode. The batch approach allows infrequent attitude
measurements to correct the entire traverse and it also enables
loop closure to be incorporated into future work which plans
to use a place-recognition algorithm [20].

Star Tracker Attitude Measurements

As described by Enright et al. [19], star tracker measurements
can be post-processed to remove the effect of atmospheric
refraction using the gravity vector calculated from the in-
clinometer. After correction, the star vectors are rematched
to the star catalogue generating revised attitude estimates
(Figure 5). These raw measurements are estimates of the star
tracker orientation in the Earth-Centred Inertial (ECI) frame
at time k, CSkI , and, in order to provide meaningful attitude
data, must be transformed to measurements relative to the
Earth-Centred Earth-Fixed (ECEF) frame (Table 1),

CSkF := CSkICIF ,
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Table 1. Frame Definitions

Frame Designation X Y Z

Earth Centred Inertial (J2000) I Vernal Equinox – North Pole
Earth Centred, Earth Fixed F Prime Meridian – North Pole
Star Tracker S Data Connector – Lens Boresight
Vehicle V Rover Heading – Parallel to Star Tracker z-axis
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Figure 4. Elevation versus distance travelled.

so that the effects of the Earth’s rotation are removed. The
transformation from ECI to ECEF, CIF , is computed via the
Greenwich Apparent Sidereal Time, from any available and
reliable clock reference. The initial orientation of the sensor,
CS0F , is averaged before the start of the rover traverse to
reduce error. During the traverse, the relative orientation of
the k-th measurement, CSkS0 , is then

CSkS0 = CSkICIFCFS0 . (1)

We can estimate the covariance of the relative attitude by
considering a first-order model of error propagation. We
perturb the measurements in (1) in terms of error rotations, φ,
ignoring any contributions from the initial orientation, CFS0 ,
to obtain(

1− φ×
SkS0

)
CSkS0 =

(
1− φ×

SkI

)
CSkI (2)

×
(
1− φ×

IF

)
CIFCFS0 ,

where 1 is the identity matrix and the operator, (·)×, is
defined for a 3×1 vector, u, as

u× =

[
u1
u2
u3

]×
:=

[
0 −u3 u2
u3 0 −u1
−u2 u1 0

]
.

Expanding and discarding second-order terms, (2) simplifies
to

φSkS0
≈ φSkI

+CSkIφIF , (3)

where the error vector, φIF , captures the uncertainty in time.
As this is a pure z-axis rotation, we can note that this error
will be a function of the Earth sidereal rate, ωe, and the
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Figure 5. A sample measurement showing the star tracker
detecting stars (×) and matching them to a catalogue of
known stars (◦).

uncertainty in time, δt, which is of the form

φIF =

[
0
0

ωeδt

]
. (4)

The covariance of the measurement, PSkS0
, is defined as

PSkS0 := E
[
φSkS0

φTSkS0

]
.

Assuming uncorrelated errors and substituting (3), this sim-
plifies to

PSkS0
= PSkI +CSkIPIFCISk

,

where

PSkI := E
[
φSkI

φTSkI

]
,

PIF := E
[
φIFφ

T
IF

]
,

are the covariance contributions of the inertial-attitude and
Earth-rotation, respectively. Using Schuster’s information
matrix formulation [21], we can calculate the inertial-attitude
covariance, PSkI , from the inertial-frame star vectors, m, as

P−1
SkI

=
∑
i

1

σ2
i

(
1−mim

T
i

)
,
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Figure 6. The S3S ST16 star tracker.

where σ2
i is the angular variance associated with the i-th star

vector, mi. From (4), the Earth-rotation contribution to the
covariance, PIF , expressed in the I-frame, must have the
form

PIF =

[
0 0 0
0 0 0
0 0 ω2

eσ
2
t

]
,

where σ2
t is the variance associated with the time measure-

ment. Table 2 shows the numerical values used for these
parameters for this paper.

Rover Pose Estimation

We wish to obtain an accurate estimate of the global posi-
tions of the rover throughout its traverse. Given a series of
relative odometric measurements as 6 DOF transformation
matrices, T̃VkVk−1

, with associated covariances, UVkVk−1
,

as well as periodic, absolute orientation measurements as
3 DOF rotation matrices, C̃SkS0

, with associated covariances,
PSkS0 , we can achieve this by finding the optimal estimate
of the global transformations from the first pose, T∗

VkV0
, that

minimizes a cost function,

J :=
1

2

∑
k

(δεTVkVk−1
U−1
VkVk−1

δεVkVk−1
(5)

+ δψTSkS0
P−1
SkS0

δψSkS0

)
.

Our errors at the current iteration, δεVkVk−1
and δψSkS0

, are
defined as

e
−δε�VkVk−1 := T̃VkVk−1

TVk−1V0
T−1
VkV0

, (6)

e
−δψ×

SkS0 := C̃SkS0C
T
V SC

T
VkV0

CV S . (7)

with the operator, (·)�, defined for a 6×1 vector, w, as

w� =

[
u
v

]�
:=

[
v× −u
0T 0

]
.

Our pose estimates, TVkV0
, are transformation matrices con-

sisting of the rotation from V0 to Vk, CVkV0 , and translation

Start

Figure 7. Locations of odometry measurements (green), star
tracker measurements (black) and subsampled star tracker
measurements (red).

Table 2. Numerical quantities for absolute orientation
calculations.

Quantity Value
σt 1 s

ωe 7.2925× 10−5 rad/s

σi 5.36× 10−5 rad

from V0 to Vk expressed in frame V0, rVkV0

V0
,

TVkV0 =:

[
CVkV0

−CVkV0
rVkV0

V0

0T 1

]
.

Assuming that the differences between estimates at subse-
quent iterations are small, we can express the new estimate in
terms of perturbations, δπVkV0

and δφVkV0
, on the previous

estimates, TVkV0 and CVkV0 ,

TVkV0 := e−δπ
�
VkV0TVkV0 , (8)

CVkV0
:= e

−δφ×
VkV0CVkV0

, (9)

and define the errors at the previous iteration, δεVkVk−1
and

δψSkS0
, analogously to (6) and (7) as

e
−δε�VkVk−1 := T̃VkVk−1

TVk−1V0
T

−1

VkV0
, (10)

e−δψ
×
SkS0 := C̃SkS0

CT
V SC

T

VkV0
CV S . (11)

Substituting (8) and (9) into (6) and (7) yields

e
−δε�VkVk−1 := T̃VkVk−1

e
−δπ�

Vk−1V0TVk−1V0T
−1

VkV0
eδπ

�
VkV0 ,

e
−δψ×

SkS0 := C̃SkS0C
T
V SC

T

VkV0
e
δφ×

VkV0CV S .
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Figure 8. Estimates produced from wheel odometry cor-
rected with all star tracker attitude measurements (blue) plot-
ted with the initial condition (green), the DGPS groundtruth
(black), and the wheel odometry (red)

Rearranging and applying (10) and (11), respectively, we are
left with

e
−δε�VkVk−1 ≈ e−δε

�
VkVk−1

× e

(
−T

�
VkV0

T
�−1

Vk−1V0
δπVk−1V0

)�

eδπ
�
VkV0 ,

e
−δψ×

SkS0 ≈ e−δψ
×
SkS0 e(C

T
V SδφVkV0

)
×

.

This can be rewritten finally as

δεVkVk−1
≈ δεVkVk−1

−Hk,k−1Bk,k−1δx,

δψSkS0
≈ δψSkS0

−Gk,0Bk,0δx,

where

Hk,k−1 :=
[
1 −T�

VkV0
T

�−1

Vk−1V0

]
,

Gk,0 :=
[
0 CT

V S 0 0
]
,

δxk,k−1 =: Bk,k−1δx,

δxk,k−1 :=

[
δπVkV0

δπVk−1V0

]
,

δπVkV0
:=

[
δρVkV0

δφVkV0

]
,

and the operator, (·)�, is defined for any transformation
matrix, T, as

T� =

[
C −Cr
0T 1

]�
:=

[
C Cr×

0 C

]
.

The minimum of (5) may be found be setting

∂J

∂δx

T

= 0,
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Figure 9. The estimate error plotted versus distance travelled
for the entire 2845 star tracker data set. The increase in error
variability in the ranges 350 m – 410 m and 925 m – 975 m is
the result of error in the groundtruth GPS estimate.

Table 3. Error for the frequent star-tracker-measurement
solution, ε, in meters expressed in the local rover frames

Mean St. Dev. Min. Max. Final
||ε|| 31.9 16.5 0.9 59.7 21.0
εx -1.5 24.1 -52.2 44.2 -10.5
εy 0.5 21.9 -36.5 52.9 -17.7
εz 12.4 8.8 -5.4 34.0 4.2

whereupon we arrive at a system of equations,

V δx = −v, (12)

where

V :=
∑
k

(
BT
k,k−1H

T
k,k−1U

−1
VkVk−1

Hk,k−1Bk,k−1

+ BT
k,0Gk,0P

−1
SkS0

Gk,0Bk,0

)
,

v := −
∑
k

(
BT
k,k−1H

T
k,k−1U

−1
VkVk−1

δεVkVk−1

+ BT
k,0Gk,0P

−1
SkS0

δψSkS0

)
.

Assuming an initial estimate from the odometry, we can solve
(12) for δx and get updated estimates from

TVkV0 ← e−δπ
�
VkV0TVkV0 .

We iterate these steps until the estimate update is tolerably
small to obtain a pose graph of absolute transformations from
the first pose, T∗

VkV0
. This representation allows for future

problems to include loop closures and for measurements to
affect estimates at all both future and past timesteps.

3. EXPERIMENT
The algorithm was tested on experimental data collected
with a real rover and star tracker (Figure 2). A Clearpath
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Figure 10. Estimates produced from wheel odometry
corrected with only 10 star tracker attitude measurements
(blue) plotted with the initial condition (green), the DGPS
groundtruth (black), and the wheel odometry (red).

Husky A200 (Figure 1) was equipped with a DGPS, and a
Sinclair Interplanetary S3S ST-16 star tracker (Figure 6) and
driven just under 2.5 kilometres through the Koffler Scientific
Reserve at Jokers Hill (KSR) (Figure 3) on the night of
September 16th, 2012, a day after a new moon, in clear
conditions.

The A200 is a 4-wheel differential-drive rover with two
motors, each equipped with quadrature encoders with a reso-
lution of approximately 20000 pulse/metre. While the rover
is electric, it was equipped for long-term autonomy with a
kilowatt gasoline generator. In order to calculate the actual
rover position during the traverse, the rover was equipped
with a differential GPS receiver and an RTK base station was
deployed at a central location.

The rover was driven manually via remote control for the
duration of the experiment. Wheel odometry was logged at
10 Hz and star tracker attitude at 1 Hz. It was expected that
the rover motion would frequently interfere with star tracker
measurements, as the images are blurred when rotational
motion exceeds 2–3 ◦/s. In practice, however, it was found
that rates this fast were rare, and the star tracker was capa-
ble of measuring attitude continuously during rover motion
(Figure 7). As a result, the rover was driven continuously for
the 7 hours that it took to travel the almost 2.5 kilometres.
The route had significant elevation change, dropping more
than 8 meters below the starting position and rising almost
12 meters above it (Figure 4).

Star Tracker

The Sinclair Interplanetary S3S ST-16 (Figure 6) is an auton-
omous star tracker designed for nanosatellite applications
featuring low mass (90 g), low power (< 1 W), small volume
(59 mm ×56 mm ×32.5 mm), and a relatively large Field
of View (FOV) (15◦×21◦). These features also make it an
attractive option for mobile rovers and long-term autonomy.
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Figure 11. The estimate error plotted versus distance
travelled for the 10 star tracker data set. The increase in error
variability in the ranges 350 m – 410 m and 925 m – 975 m is
the result of error in the groundtruth GPS estimate.

Table 4. Error for the subsampled star-tracker-measurement
solution, ε, in metres expressed in the local rover frames

Mean St. Dev. Min. Max. Final
||ε|| 77.3 39.6 0.9 143.4 75.8
εx 1.5 51.4 -111.0 140.3 -68.0
εy 7.5 66.9 -103.4 136.2 -31.4
εz 9.0 17.3 -15.2 39.5 -11.4

The large FOV gives the S3S the ability to detect an increased
number of stars compared to other star trackers, allowing for
a design that relies on the detection of bright stars (magnitude
5.75 or brighter) over a wide area of the sky instead of dimmer
stars distributed in a smaller area. This design is advanta-
geous for atmospheric operations, as viewing conditions (e.g.,
light pollution, clouds, etc.) place a lower bound on the
visibility of dim stars. Thus, the S3S should be more reliable
in these applications than other sensors that require the detec-
tion of dimmer stars. The sensor telemetry includes attitude
relative to the J2000 Earth-Centred Inertial frame (Table
1), attitude covariance, and extended information about the
stars in view. While not used in these experiments, the
firmware can also correct for atmospheric refraction online
eliminating the need for post-processing. For the purpose
of these experiments, the Greenwich Apparent Sidereal Time
was calculated in post-processing from the GPS clock.

4. RESULTS
In this section we discuss the results of two simulated exper-
iments generated from the one data set: (i) a experiment con-
taining 2845 star tracker measurements, and (ii) a experiment
containing only 10 star tracker measurements.

Frequent Star Tracker Measurements

The wheel odometry was post-processed into 5-second in-
crements and assigned the nearest star tracker measurement
that occurred within 1 second. This resulted in a traverse of
5123 poses with 2845 star tracker measurements that were
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Figure 12. Estimates produced from star-tracker-corrected
lidar VO (blue) and wheel odometry (red) plotted with the
DGPS groundtruth (black).

used to verify the algorithm described in Section 2. The batch
optimization initial conditions consisted of a poor-man’s sen-
sor fusion that replaced the odometric rotation estimate with
the star tracker measurement whenever available (Figure 8).

The results of the optimization, xest, were compared to post-
processed differential GPS measurements, xgps, of the rover’s
actual location during the traverse. The first 100 poses,
approximately 100 m, were used to calculate the rotation
from GPS frame to vehicle frame.

The resulting position error,

ε := xgps − xest, (13)

was found to be significantly better than simple wheel odom-
etry (Figure 8). The error of the final position was found to
be 21 m, or 0.85% of the distance travelled. (Figure 9, Table
3).

The optimization was performed in Matlab on an Intel Core
i7 2.67 GHz processor running 64bit Ubuntu Linux with
4 GB of memory. The presented wheel odometry results took
approximately 2.75 hours of processing time.

Subsampled Star Tracker Measurements

To emulate applications where rover speed does not permit
continuous operation of the star tracker, the attitude measure-
ments were subsampled to approximately a spacing of every
250 metres (Figure 7). The resulting 10 measurements were
used as attitude corrections on the 5123 rover poses in a sec-
ond optimization problem and the results of the optimization
are presented. Poor-man’s sensor fusion was again used as
the initial conditions. As in the previous section, the first
100 poses of the solution, approximately 100 m, were used to
calculate the rotation from GPS frame to vehicle frame and
the results were compared to the differential GPS.

The resulting position error was found to be significantly
better than simple wheel odometry and the poor-man’s sensor
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Figure 13. The 3D estimate error for visual- (blue) and
wheel- (red) odometry estimates corrected by the full star
tracker measurements versus distance travelled over the first
1 km of the traverse. The increase in error variability between
350 m – 410 m and 925 m – 975 m is the result of error in the
groundtruth GPS estimate.

fusion (Figure 10). The error of the final position was found
to be 75.8 m, or 3.0% of the distance travelled. (Figure 11,
Table 4).

The optimization was performed in Matlab on an Intel Core
i7 2.67 GHz processor running 64bit Ubuntu Linux with
4 GB of memory. The presented wheel odometry results took
45 minutes of processing.

5. DISCUSSION & FUTURE WORK
The results of Section 4 demonstrate that, when the rover is
driving slow enough to collect frequent star tracker measure-
ments (Figure 7), the batch optimization presented in Section
2 provides a better estimate than the wheel odometry; how-
ever, it is not sufficiently more accurate than the poor-man’s
sensor fusion that replaces the odometric rotation estimate
with the star tracker measurement whenever available. In
this case, an Extended Kalman Filter (EKF) may provide a
sufficient improvement to the of poor-man’s sensor fusion
without the cost of a batch estimate.

If, however, the rover operates at speeds too high to collect
star tracker measurements, or the star tracker measurements
are otherwise very infrequent, the presented batch algorithm
clearly provides a better estimate than wheel odometry alone
or the poor-man’s sensor fusion. The batch formulation
allows for measurements to affect estimates at all timesteps,
resulting in a smoother and more accurate solution, and
allowing for the future inclusion of place recognition and loop
closure.

The timing results in this paper are from an unoptimized
Matlab implementation. It is expected that the computational
performance could be significantly improved by efficient
implementations or advanced techniques, such as Incremental
Smoothing and Mapping (iSAM) [22]. As is, however, the
estimator still ran in less time than the rover took to drive the
2.5 kilometre traverse.
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Figure 14. The z component of estimate error for visual-
(blue) and wheel- (red) odometry estimates corrected by the
full star tracker measurements versus distance travelled over
the first 1 km of the traverse. The increase in error variability
between 350 m – 410 m and 925 m – 975 m is the result of
error in the groundtruth GPS estimate.

The combination of wheel odometry, the star tracker, and the
batch optimization make the presented results quite attractive
in terms of accuracy and simplicity. The presented results ri-
val VO with simpler sensors; however, there remain areas for
improvement. Wheel odometry alone can only estimate rover
motion on a 2D plane, and wheel slip makes it inaccurate
over long distances. For these reasons, lighting-invariant VO
is worth investigating for further improvements. While there
has been some success in using light sources in conjunction
with stereo cameras and traditional VO [13], [14], they would
require design and operational procedures to mitigate light
pollution for the star tracker. Regardless of the VO solution,
optical contamination created by the rover, e.g., dust, would
remain an important, but ultimately tractable, deployment
problem.

Success by McManus et al. [15] and Dong and Barfoot [16]
using lidar intensity images for VO suggest that a lidar is
a natural choice for improved odometric measurements for
this mission scenario. In order to investigate this potential,
the Husky A200 was also equipped with a SICK scanning
lidar during the experiment (Figure 15). The SICK was
mounted in a vertical-scan configuration on a pan-tilt unit
that oscillated it left-to-right. Intensity-based VO using the
resulting data provided better odometric estimates than wheel
odometry for portions of the traverse (Figure 13). After
approximately 1 kilometre, the lidar-VO-based estimate with
star tracker measurements has less error than the equivalent
wheel-odometry-based estimate (51.0 m to 57.7 m, Figure
12). As VO provides full 6 DOF estimates, the z-component
of the resulting error is significantly lower (Figure 14). After
this first kilometre, we experienced a large grass section
around the northern-most turn of the traverse and were unable
to track features for an extended period of time, leading to
poor estimator performance. As with stereo-camera VO,
tracking features in grass remains a formidable challenge
and more work is required to address the issues arising from
vegetation. In general, performing VO on data collected from
a sensor with such high levels of motion distortion is an
ongoing research topic [23].

Figure 15. The intensity-image VO pipeline. An intensity
image (a) is acquired from the SICK lidar and processed for
SURF features (b). Features are matched between frames (c)
to provide a motion estimate.

6. CONCLUSIONS
This paper presented a method to correct odometric estimates
for drift and/or bias using a star tracker during full-dark
rover operations. The algorithm was tested on a real rover
with a star tracker and inclinometer, which, to the best
of the authors’ knowledge, is a robotic first. The results
presented show that the algorithm is extremely successful
at creating an accurate estimate despite using simple, low-
computational-cost sensors, such as wheel odometry, over
extended distances. When using the entire set of attitude
measurements the final position error was 21 metres over
a traverse of just under 2.5 kilometres, or 0.85% of the
total distance travelled. When the attitude measurements
were limited to approximately every 250 metres, only 10
for the entire traverse, the resulting final position error was
75.8 metres, or 3.0% of the total distance travelled.

The results also highlight the challenges of using lidar-based
VO instead of wheel odometry. When there were sufficient
features, the lidar-based VO outperformed the wheel odom-
etry; however, significant periods without adequate features
made the complete estimate inaccurate. This is a challenge
that was further amplified by the scanning nature of the SICK
lidar and the vegetation-heavy test environment at KSR;
however, based on these results, we believe that star trackers
will provide suitable attitude correction for lidar VO.
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APPENDICES

A. MATRIX OPERATOR DEFINITIONS
Given

w :=

[
u
v

]
, u :=

[
u1
u2
u3

]
, v :=

[
v1
v2
v3

]
,

and

T =

[
C −Cr
0T 1

]
,

the following operators are defined:

u× :=

[
0 −u3 u2
u3 0 −u1
−u2 u1 0

]
, w� :=

[
v× −u
0T 0

]
,

T� :=

[
C Cr×

0 C

]
.

B. MATRIX OPERATOR IDENTITIES
Given the definitions in Appendix A, we have the following
identities:

(αu+ βv)
× ≡ αu× + βv×,

u×T

≡ −u×, u×u ≡ 0, u×v ≡ −v×u,

(T1T2)
� ≡ T�

1 T
�
2 , T�−1

≡ T−1� ,

e(T
�w)

�

≡ Tew
�

T−1,

(Cu)
× ≡ Cu×CT ,

e(Cu)× ≡ Ceu
×
CT ,

where α and β are scalars, T is a transformation matrix, C is
a rotation matrix, and u, v, and w are vectors as defined in
Appendix A.
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