
Leveraging multiple sources of information
to search continuous spaces

Marlin P. Strub

Lady Margaret Hall

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Michaelmas 2021

Dedicated to

Josi, Bea, and Moris.

Acknowledgments
This thesis and the research it contains were made possible by the support of my
colleagues, family, and friends. I take pleasure in this opportunity to publicly
acknowledge their contributions and express my heartfelt gratitude for their help.

I want to start by thanking my supervisor, Dr. Jonathan D. Gammell. Your
extensive expertise, inexhaustible patience, and impeccable academic integrity have
been an immense source of inspiration throughout my studies. Other doctoral
students sometimes seemed to have giants standing on their shoulders, but you
have always let me stand on yours. For that I will always be grateful.

I want to thank my examiners, Prof. Nick Hawes and Prof. Wheeler Ruml.
Thank you for considering my work, your feedback on my research is sincerely
appreciated. In a similar vein, I want to thank Dr. Ioannis Havoutis. Thank you
for your valuable comments on my research progress at Oxford.

I also want to thank the numerous other exceptional people at ORI that have
influenced my thinking and enriched my D.Phil. experience. Special thanks go to
Kevin and Rowan. Thank you for taking me under your wings. I also want to thank
Irene Yang and Prof. Stephen J. Mellon of the Oxford Orthopaedic Engineering
Centre. Your expertise on knee replacements has had great impact on my research.

I want to thank my collaborators at JPL, Mike, Issa, Travis, and Jacob. Thank
you for the opportunity to work on such a cool project and for welcoming me to
your incredible team. I often reminisce about the field trial in the Mojave Desert.

Next I want to thank my friends and housemates Costa and Ewa. I consider
myself the luckiest person in Oxford to have lived with you and will never forget
your generosity. I want you to know that I have truly cherished our time together.

Finally I want to extend my deepest gratitude to my family, Bea, Josi, and
Moris, my partner, Rahel, and my closest friends, Alessandro, Laurenz, Luca,
Diego, and Yves. To Bea, Josi, and Moris, I am forever grateful to be part of such
a supporting, understanding, and loving family. You are my biggest sources of
strength and I love you with all my heart. To Rahel, your support, understanding,
and love have made my studies infinitely more enjoyable. I love you to Mars and
back. . . To Alessandro, Laurenz, Luca, Diego, and Yves, your friendships mean
more to me than you will ever know.

i

Abstract

Path planning algorithms can solve the problem of finding paths through continuous

spaces. This problem appears in a wide range of applications, from navigating au-

tonomous robots to automating assessments of surgical tolerances. The performance

requirements on these algorithms tend to become more demanding as the problems

they are applied to become more sophisticated. This simultaneous increase in perfor-

mance requirements and application complexity calls for new approaches to the path

planning problem and makes it an active area of research in robotics and beyond.

This thesis demonstrates how different types of information can be leveraged to

solve the path planning problem more effectively. Optimization-specific information

can guide the search towards high-quality solutions, environment-specific information

can exploit incremental information about the surroundings, and intent-specific

information can directly align the search of a problem with its priorities.

These three types of information are leveraged in this thesis by integrating

advanced graph-search techniques in sampling-based path planning algorithms. The

resulting planners, Advanced BIT* (ABIT*), Adaptively Informed Trees (AIT*),

and Effort Informed Trees (EIT*), are theoretically shown to be almost-surely

asymptotically optimal and experimentally demonstrated to outperform existing

planners on diverse problems in abstract, robotic, and biomedical domains.

ii

Contents

1 Introduction 1
Finding paths through continuous spaces

2 Background 10
Definitions, related work, and assumptions

2.1 Path planning problems . 12
2.1.1 The feasible path planning problem 12
2.1.2 The optimal path planning problem 14

2.2 Graph-based search . 15
2.2.1 Optimal search . 16
2.2.2 Bounded suboptimal search 21
2.2.3 Anytime search . 24
2.2.4 Incremental search . 25
2.2.5 Improving graph-search heuristics 26

2.3 Sampling-based planning . 27
2.3.1 Multiquery planning . 28
2.3.2 Single-query planning . 30

2.4 Analysis of sampling-based planners 33
2.4.1 Assumptions . 34

2.4.1.1 Search space assumption 35
2.4.1.2 Cost function assumptions 35
2.4.1.3 Obstacle assumption 36
2.4.1.4 Optimal solution assumption 36

2.5 Discussion . 36

3 Advanced BIT* (ABIT*) 39
The extended benefits of optimization-specific information

3.1 Literature review . 42

i

3.1.1 Fast Marching Trees (FMT*) 42
3.1.2 Batch Informed Trees (BIT*) 43

3.2 Algorithm description . 45
3.2.1 Notation . 46
3.2.2 Initialization . 48
3.2.3 Search . 48
3.2.4 Approximation . 49
3.2.5 Approximation, inflation, and truncation policies 50

3.3 Analysis . 51
3.3.1 Approximation . 52
3.3.2 Search . 52

3.4 Evaluation . 54
3.4.1 Abstract problems . 57
3.4.2 Reeds-Shepp car problems 59

3.5 Deploying ABIT* on a next-generation rover 62
3.5.1 Adapting ABIT* to plan for Axel 62
3.5.2 Verifying the adaptations of ABIT* 64

3.6 Discussion . 66

4 Adaptively Informed Trees (AIT*) 69
The benefits of environment-specific information

4.1 Literature review . 72
4.1.1 Motion Planning using Lower Bounds (MPLB) 73
4.1.2 Indirectly leveraging environment-specific information 74

4.2 Algorithm description . 75
4.2.1 Notation . 78
4.2.2 Initialization . 78
4.2.3 Reverse search . 78

4.2.3.1 Termination and suspension conditions 80
4.2.4 Forward search . 81

4.2.4.1 Termination conditions 82
4.2.5 Approximation . 83

4.3 Analysis . 85
4.3.1 Reverse search suspension condition 85

4.4 Evaluation . 90
4.4.1 Reeds-Shepp car problems 91

ii

4.4.2 Manipulator arm problem 93
4.4.3 Knee replacement dislocation problem 95

4.5 Discussion . 97

5 Effort Informed Trees (EIT*) 100
The benefits of intent-specific information

5.1 Literature review . 103
5.1.1 Bayesian Effort-Aided Search Trees (BEAST) 103
5.1.2 Graph-search algorithms with effort heuristics 104

5.2 Algorithm description . 106
5.2.1 Notation . 107
5.2.2 Initialization . 109
5.2.3 Reverse search . 109

5.2.3.1 Termination and suspension conditions 111
5.2.4 Forward search . 112

5.2.4.1 Optimal cost bound 113
5.2.4.2 Optimal cost estimate 114
5.2.4.3 Minimum effort estimate 114
5.2.4.4 Edge processing . 115
5.2.4.5 Termination conditions 118

5.3 Analysis . 119
5.3.1 Reverse search suspension condition 119

5.4 Evaluation . 124
5.4.1 Abstract problems . 126
5.4.2 Reeds-Shepp car problems 130
5.4.3 Manipulator arm problems 132
5.4.4 Knee replacement dislocation problem 135

5.5 Discussion . 137

6 Conclusion 141
Summary, results overview, current and future applications

iii

List of Figures

1 Introduction
Finding paths through continuous spaces

1.1 Path planning applications . 2
1.2 The benefits of different types of problem-specific information . . . 9

2 Background
Definitions, related work, and assumptions

2.1 The feasible and optimal path planning problems 11
2.2 The difficulty of discretizing continuous problems 15
2.3 How Dijkstra’s algorithm searches a discretized planning problem. . 17
2.4 How A* searches a discretized planning problem 18
2.5 How a bidirectional Dijkstra’s algorithm searches a discretized plan-

ning problem . 19
2.6 How a bidirectional A* searches a discretized planning problem . . 20
2.7 How WA* with inflation factors of two and ten searches a discretized

planning problem. 22
2.8 How PRM searches a continuous planning problem 29
2.9 How RRT searches a continuous planning problem 31

3 Advanced BIT* (ABIT*)
The extended benefits of optimization-specific information

3.1 Five snapshots of how ABIT* searches a continuous planning problem 40
3.2 Performance plot generation . 55
3.3 The wall gap problem and an example of a Reeds-Shepp car problem 56
3.4 Planner performances on the wall gap problem in R2, R8, and R16 . 58
3.5 Planner performances on the best and worst Reeds-Shepp car prob-

lems for ABIT* . 61
3.6 NASA/JPL-Caltech’s Axel rover system 62

iv

3.7 An Axel planning problem with non-Markovian tether constraints . 64
3.8 Respecting tether constraints in ABIT* 65
3.9 Real-world planning problem for Axel 66

4 Adaptively Informed Trees (AIT*)
The benefits of environment-specific information

4.1 Five snapshots of how AIT* searches a continuous planning problem 70
4.2 Planner performances on the best and worst Reeds-Shepp car prob-

lems for AIT* . 92
4.3 The single-arm manipulator problem 94
4.4 Planner performances on the single-arm manipulator problem . . . 94
4.5 The knee replacement dislocation problem 96
4.6 Planner performances on the knee replacement dislocation problem 96

5 Effort Informed Trees (EIT*)
The benefits of intent-specific information

5.1 Five snapshots of how EIT* searches a continuous planning problem 101
5.2 Planner performances on the wall gap problem in R2 when minimizing

path length and optimizing obstacle clearance 127
5.3 Planner performances on the wall gap problem in R8 when minimizing

path length and optimizing obstacle clearance 128
5.4 Planner performances on the wall gap problem in R16 when minimiz-

ing path length and optimizing obstacle clearance 129
5.5 Planner performances on the best and worst Reeds-Shepp car prob-

lems for EIT* . 131
5.6 The dual manipulator arm problem 132
5.7 Planner performances on the single-arm manipulator problem when

optimizing path length and obstacle clearance 133
5.8 Planner performances on the dual-arm manipulator problem when

optimizing path length and obstacle clearance 134
5.9 Planner performances on the knee replacement dislocation problem

when optimizing path length and obstacle clearance 136

v

6 Conclusion
Summary, results overview, current and future applications

6.1 Real-world applications of ABIT* and AIT* 143

vi

List of Tables

1 Introduction
Finding paths through continuous spaces

1.1 An overview of the different types of problem-specific information
leveraged by the searches of RRT*, BIT*, ABIT*, AIT*, and EIT* 6

3 Advanced BIT* (ABIT*)
The extended benefits of optimization-specific information

3.1 Numbers of Reeds-Shepp car problems solved with a success rate of
at least 50% . 60

4 Adaptively Informed Trees (AIT*)
The benefits of environment-specific information

4.1 Numbers of Reeds-Shepp car problems solved with a success rate of
at least 50% . 91

5 Effort Informed Trees (EIT*)
The benefits of intent-specific information

5.1 Numbers of Reeds-Shepp car problems solved with a success rate of
at least 50% . 130

6 Conclusion
Summary, results overview, current and future applications

6.1 An overview of the information and algorithm components used by
ABIT*, AIT*, and EIT* . 145

vii

List of Algorithms

3 Advanced BIT* (ABIT*)
The extended benefits of optimization-specific information

1 Advanced BIT* (ABIT*) . 47
2 ABIT*: expand_or_mark_inconsistent (x) 49
3 ABIT*: expand (x) . 49
4 ABIT*: neighbors (x) . 50
5 ABIT*: prune (V,E,Xsampled, ccurrent) 50

4 Adaptively Informed Trees (AIT*)
The benefits of environment-specific information

6 Conceptual AIT* . 76
7 Adaptively Informed Trees (AIT*) 77
8 AIT*: update_state (x) . 79
9 AIT*: continue_reverse_search () 80
10 AIT*: invalidate_reverse_branch (x) 82
11 AIT*: continue_forward_search () 83
12 AIT*: expand (X) . 84
13 AIT*: neighbors (x) . 84
14 AIT*: prune (V,E,Xsampled) . 84

5 Effort Informed Trees (EIT*)
The benefits of intent-specific information

15 Effort Informed Trees (EIT*) . 108
16 EIT*: continue_reverse_search () 111
17 EIT*: get_best_forward_edge (QF) 116
18 EIT*: continue_forward_search () 118

viii

List of Acronyms

AA* Anytime A*

AD* Anytime D*

A-MHA* Anytime Multi-Heuristic A*

ABIT* Advanced BIT*

AEES Anytime Explicit Estimation Search

AIT* Adaptively Informed Trees

ANA* Anytime Nonparametric A*

ARA* Anytime Repairing A*

ARCRAS Annual Review of Control, Robotics, and Autonomous Systems

ATD* Anytime Truncated D*

BEAST Bayesian Effort-Aided Search Trees

BFMT* Bidirectional FMT*

BHFFA Bidirectional Heuristic Front-to-Front Algorithm

BHPA Bidirectional Heuristic Path Algorithm

BIT* Batch Informed Trees

BIDA* Bidirectional Iterative-Deepening A*

BVP Boundary Value Problem

C-PRM Customizable PRM

CAD Computer-Aided Design

CDF Cumulative Distribution Function

CHOMP Covariant Hamiltonian Optimization for Motion Planning

EES Explicit Estimation Search

EIT* Effort Informed Trees

ix

EST Expansive Space Trees

FCL Flexible Collision Library

FMT* Fast Marching Trees

GP Generalized Pohl

HA* Hierarchical A*

HCA* Hierarchical Cooperative A*

ICRA International Conference on Robotics and Automation

IDA* Iterative-Deepening A*

IJRR International Journal of Robotics Research

IROS International Conference on Intelligent Robots and Systems

IDBHFFA Iterative Deepening BHFFA

LWA* Lazy Weighted A*

LPA* Lifelong Planning A*

MHA* Multi-Heuristic A*

MPLB Motion Planning using Lower Bounds

NBS Near-optimal Bidirectional Search

OBB Oriented Bounding Box

OMPL Open Motion Planning Library

OpenRAVE Open Robotics Automation Virtual Environment

ORI Oxford Robotics Institute

PRM Probabilistic Roadmaps

PDF Probability Density Function

PS Perimeter Search

RABIT* Regionally Accelerated BIT*

RGG Random Geometric Graph

RRA* Reverse Resumable A*

RRT Rapidly-exploring Random Trees

RSS Rectangle Swept Sphere

RWA* Restarting Weighted A*

x

SA∗ε Simplified A∗ε

SAT Separating Axis Theorem

SEE Surface Edge Explorer

SEES Simplified EES

STOMP Stochastic Trajectory Optimization for Motion Planning

TLPA* Truncated Lifelong Planning A*

UKR Unicompartmental Knee Replacement

WA* Weighted A*

WAM Whole-Arm Manipulator

WHCA* Windowed HCA*

xi

Notation

General

a Lower-case variables in this font are scalars.
a Lower-case variables in this font are vectors.
A Upper-case variables in this font are sets or spaces.
A Upper-case variables in this font are special data structures, e.g.,

graphs or queues.

Special symbols and scalars

∅ The empty set.
∞ The symbol for infinity.
εi An inflation factor greater or equal to one.
εt A truncation factor greater or equal to one.
η A scaling factor for connection parameters.
q The number of samples generated by a planning algorithm.
n The dimension of the search space.
m The number of samples per batch in ABIT*, AIT*, and EIT*.
ρ A (sparse) collision detection resolution.
c∗ The optimal solution cost of a planning problem.

ccurrent The cost of the current best solution found by a planning algorithm.
t A variable to denote the progress along a path.

Vectors

x A state in the search space.
xstart The start state of a planning problem.
xgoal A goal state of a planning problem.
xs The source state of an edge.
xt The target state of an edge.

xii

Sets, spaces, data structures, and set operations

X The search space of a planning problem.
Xvalid The set of valid states of a planning problem.
Xinvalid The set of invalid states of a planning problem.
Xgoal The goal states of a planning problem.

Xsampled The sampled states of a planning algorithm.
Σ A set of paths.
Xf̂ The informed set.

Vinconsistent The set of inconsistent vertices.
V A set of vertices.
E A set of edges.

F ,R, T Graphs without cycles, i.e., trees.
Q A queue.

A
+←− B Abbreviation for adding set B to set A, i.e., A← A ∪B.

A
−←− B Abbreviation for removing set B from set A, i.e., A← A \B.

Unary functions

σ (·) A path whose parameter is a variable between 0 and 1.
H (·) A homotopic map between two paths.

TV (·) The total variation of a path.
λ (·) The Lebesgue measure of a set.
P (·) The probability of an event.
c (·) The cost of a path.

gT (·) The cost to reach a state through the tree T .
d̄ (·) An inadmissible estimate of the effort to reach a state from the start.
ĝ (·) An admissible estimate of the cost to reach a state from the start.
ĥ (·) An admissible estimate of the cost to reach the goal from a state.
f̂ (·) An admissible estimate of the solution cost when that solution is

constrained to go through a state, often f̂ (·) := ĝ (·) + ĥ (·).

Binary functions

c (· , ·) The path cost between two states.
ĉ (· , ·) An admissible estimate of the path cost between two states.
c̄ (· , ·) An inadmissible estimate of the path cost between two states.
ē (· , ·) An inadmissible estimate of the path effort between two states.

xiii

Chapter 1

Introduction
Finding paths through continuous spaces

Path planning is about finding paths through continuous spaces that possibly

contain obstacles. It is a fundamental task in a wide variety of applications, such as

navigating next-generation rovers designed for Mars (Figure 1.1a; Paton et al., 2020),

optimizing routes for power transmission lines (Figure 1.1b; Gonçalves et al., 2021),

and assessing tolerances for knee replacements (Figure 1.1c; Yang et al., 2020).

Many recent applications operate in increasingly complex environments and require

reliably finding high-quality paths in short amounts of time.

This can be challenging for various reasons. Modern applications often have

high-dimensional search spaces, are governed by complicated constraints, contain

adverse obstacle configurations, or require computationally expensive cost evaluation

or collision detection. These characteristics are frequently combined, and their

difficulties compounded, such that many modern applications give rise to path

planning problems that can currently not be solved in an exact manner.

Fortunately, approximate solutions often suffice. Approaches to approximately

solving path planning problems include limiting the search to the surroundings of an

initial solution-guess (i.e., optimization-based solvers), solving a discretized version

of the problem at an a priori resolution (i.e., graph-based searches), and finding

1

Introduction 2

(a) (b) (c)

Figure 1.1: Path planning appears in various applications, such as navigating next-
generation rovers destined for Mars (a), planning optimal routes for power transmission
lines (b), and assessing surgical tolerances for a knee replacement (c). Illustrations courtesy
of NASA/JPL, Gonçalves et al. (2021), and Pandit et al. (2010), respectively.

paths by sampling and connecting individual states (i.e., sampling-based planners).

These approaches have complementary strengths, but unifying them is challenging.

For example, popular graph-search algorithms, such as A* (Hart et al., 1968),

offer principled and efficient searches but cannot directly be applied to continuous

search spaces. Popular sampling-based planners, such as Rapidly-exploring Random

Trees (RRT; LaValle and Kuffner Jr., 1999, 2001) and its asymptotically optimal

extension, RRT* (Karaman and Frazzoli, 2010a, 2011), have random and inefficient

searches but can directly be applied to continuous search spaces.

A recent effort that successfully incorporates some strengths of graph-based

searches in sampling-based planning achieves this by viewing its sampled states as

vertices of a graph that is embedded in the search space of a planning problem (Gam-

mell, 2017). This perspective returns sampling-based planners to separating the

approximation of the search space from the search of this approximation, which

allows researching both subproblems independently. This thesis adopts this perspec-

tive and focuses on the search of sampling-based approximations. The presented

algorithms can thereby outperform existing planners in many applications by lever-

aging insights and techniques from decades of research on graph-based searches

and sampling-based approximations.

Introduction 3

The fundamental insight this thesis builds on is that additional, problem-specific

information can greatly improve search performance. For example, when searching

for the shortest path through a road network, A* can leverage the fact that the

shortest (partial) solution starting from any vertex in the network cannot be shorter

than the straight-line distance between that vertex and the goal. Such seemingly

trivial information enables informed algorithms (i.e., algorithms that can leverage

problem-specific information) to solve problems that are unsolvable with uninformed

algorithms (i.e., algorithms that cannot leverage problem-specific information).

This information about the (partial) solution cost is not the only type of problem-

specific information that can be leveraged to improve search performance. Comple-

mentary information can provide additional benefits and this thesis demonstrates

how such information can be leveraged in sampling-based path planning. The algo-

rithms presented in this thesis leverage up to three different types of problem-specific

information, which are introduced in the following three paragraphs:

Optimization-specific information Path planning problems that require high-

quality solutions must provide a way to evaluate solution quality. This is often

achieved by defining a cost function, i.e., a function that maps paths to scalars (e.g.,

path length). Many cost functions have properties that can be exploited when solving

a specific path planning problem. This thesis calls information about such properties

optimization-specific information. An example of such information is a cost heuristic,

i.e., a function that approximates the true cost of a path (e.g., as the straight-line

distance between the endpoints of the path when minimizing path length).

Environment-specific information Path planning problems are specific to the

obstacles of the environments they operate in and must provide a way to determine

whether individual states are in collision with these obstacles. This partitions

the search space into the collectively exhaustive but mutually exclusive sets of

valid and invalid states which correspond to the obstacles in the environment.

Introduction 4

Many obstacle configurations have properties that can be exploited when solving a

specific path planning problem. This thesis calls information about such properties

environment-specific information. An example of such information is the distribution

of valid and invalid states in the search space (e.g., as observed by incrementally

checking samples for collision).

Intent-specific information Path planning problems are often solved with spe-

cific priorities. For example, mobile robots may prioritize solution time over solution

quality due to hard time constraints. Algorithms designed for such problems can

improve their performance by reflecting these priorities in their searches. This thesis

calls information about such priorities intent-specific information. An example of

such information for applications that prioritize solution times is an effort heuris-

tic, i.e., a function that approximates the computational effort required to find a

solution (e.g., by estimating the number of remaining collision checks).

These sources of information are leveraged in the algorithms presented in this

thesis by building on Batch Informed Trees (BIT*; Gammell et al., 2015, 2020). BIT*

is a single-query sampling-based path planning algorithm that solves problems by

simultaneously approximating the search space with a sampling-based approximation

and searching this approximation with an informed graph-based search.

BIT* approximates the search space by sampling multiple batches of states

and viewing these samples as a series of increasingly dense, edge-implicit Random

Geometric Graphs (RGGs; Penrose, 2003). This series of RGG approximations

is focused to the relevant region of the search space by only sampling states that

could potentially improve the current solution and pruning samples that no longer

satisfy this requirement. BIT* achieves this by leveraging optimization-specific

information in the form of a cost heuristic that provides a lower bound on the

optimal solution cost between two states (Gammell et al., 2018).

BIT* also leverages such a cost heuristic to order its search on the total potential

Introduction 5

solution costs of the edges in its RGG approximations. The total potential solution

cost of an edge is computed as the sum of the current cost-to-come to the source

state of the edge, a heuristic estimate of the edge cost, and a heuristic estimate

of the cost-to-go to the goal from the target of the edge (i.e., similar to an edge-

queue version of A*). This results in an efficient algorithm that almost-surely

asymptotically finds optimal solutions to (continuous) path planning problems.

Optimization-specific information can be leveraged in sampling-based planning

for more than focusing sampling-based approximations and estimating total potential

solution costs of edges. Chapter 3 presents Advanced BIT* (ABIT*; Strub and

Gammell, 2020b), which builds on BIT* by using advanced graph-search techniques,

such as inflation and truncation, to further leverage the benefits of optimization-

specific information in sampling-based planning.

ABIT* achieves this by inflating the estimates of the cost-to-go from the target of

an edge when ordering its search. This biases the search towards the goal and often

results in faster initial solution times. ABIT* additionally truncates the search when

it is guaranteed that the current RGG approximation does not contain a solution

that is significantly better than the best solution found so far. This gives ABIT* fine

control over when it improves its RGG approximation, which allows it to balance the

exploration of the search space with the exploitation of its current approximation.

BIT* and ABIT* use optimization-specific information but fail to guide their

search with the environment-specific information that they gain from collision

detection. Chapter 4 presents Adaptively Informed Trees (AIT*; Strub and Gammell,

2020a, 2021b), which uses a series of similar RGG approximations as BIT* but

leverages both optimization- and environment-specific information to search it.

AIT* achieves this with a hierarchical bidirectional search that is asymmetric

both in purpose and in computational cost and simultaneously calculates and

exploits an approximation-specific cost heuristic. The inexpensive reverse search

does not check edges for collision but uses the connectivity of the current RGG

Introduction 6

Type of problem-specific information RRT* BIT* ABIT* AIT* EIT*

Optimization-specific
Environment-specific
Intent-specific

Table 1.1: An overview of the different types of problem-specific information leveraged
by the searches of RRT*, BIT*, ABIT*, AIT*, and EIT*. A hollow check mark ()
is used to indicate local or incomplete utilization of the specific type of information, a
check mark () for global or complete utilization, and a double check mark () for
additional utilization. A cross () indicates no use of the information.

approximation to combine cost heuristics between multiple samples into a more

accurate, approximation-specific cost heuristic between each sample and the goal.

The expensive forward search checks edges for collision but is focused on promising

paths by the calculated cost heuristic. When the forward search detects a collision

on an edge that was used to calculate the heuristic in the reverse search, then

the reverse search uses this information to update the calculated heuristic. In

this way, the forward and reverse searches in AIT* continuously inform each other

with complementary information.

AIT* leverages optimization- and environment-specific information but fails

to directly reflect the priorities of a planning problem in the order of its search.

Chapter 5 presents Effort Informed Trees (EIT*; Strub and Gammell, 2021b), which

uses the same series of RGG approximations as AIT* but leverages optimization-,

environment-, and intent-specific information to explicitly align its search with the

priorities of the end-user that poses the planning problem.

EIT* achieves this with a similar hierarchical bidirectional search as AIT*, but

simultaneously calculates and exploits cost and effort heuristics. As in AIT*, the

inexpensive reverse search does not fully check edges for collision but uses the connec-

tivity of the RGG approximation to combine cost and effort heuristics between mul-

tiple samples into more accurate cost and effort heuristics between each sample and

the goal. The expensive forward search again checks edges for collision but is aligned

Introduction 7

with the priorities of the problem by the calculated cost and effort heuristics. Similar

to AIT*, if the forward search detects a collision on an edge that was used to calculate

a heuristic with the reverse search, then it causes the reverse search to update the

heuristic. The forward and reverse searches therefore also continuously inform each

other with complementary information in EIT*. Table 1.1 shows an overview of the

problem-specific information leveraged by RRT*, BIT*, ABIT*, AIT*, and EIT*.

The benefits of optimization-, environment- and intent-specific information

are illustrated in Figure 1.2 and demonstrated on various problems in abstract,

nonholonomic, robotic, and biomedical settings (Sections 3.4, 4.4, and 5.4). The

results show that ABIT*, AIT*, and EIT* outperform other asymptotically optimal

sampling-based planners on most of the tested problems.

The core contributions of this thesis are:

• A review of the relevant literature on graph-based searches and sampling-based

planners that lists the advantages and drawbacks of each paradigm (Chapter 2).

• A detailed presentation of ABIT*, which extensively leverages optimization-

specific information in sampling-based path planning with advanced graph-

search techniques (Chapter 3).

• A detailed presentation of AIT*, which leverages optimization- and environ-

ment-specific information with an hierarchical bidirectional search in which

both searches continuously inform each other with complementary informa-

tion (Chapter 4).

• A detailed presentation of EIT*, which extends AIT* by additionally leverag-

ing intent-specific information to directly align its search with the priorities

of the problem (Chapter 5).

• Proofs of the almost-sure asymptotic optimality of all presented algorithms that

combine established results from the literature on sampling-based planning

and graph-based search (Sections 3.3, 4.3, and 5.3).

Introduction 8

Versions of this work already resulted in or contributed to six scientific papers

which were published in the Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA; Strub and Gammell, 2020b,a), in the Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS;

Paton et al., 2020), on arXiv (Strub and Gammell, 2021a), in the Annual Review of

Control, Robotics, and Autonomous Systems (ARCRAS; Gammell and Strub, 2021),

and in the International Journal of Robotics Research (IJRR; Strub and Gammell,

2021b). Reference implementations of ABIT*, AIT*, and EIT* are publicly available

in the Open Motion Planning Library (OMPL; Şucan et al., 2012).

The work presented in this thesis has also been used by other researchers. ABIT*

was used on two next-generation NASA/JPL-Caltech rovers (Paton et al., 2020;

Reid et al., 2020), and AIT* is currently used at the Oxford Robotics Institute (ORI)

to plan paths for a UR-10 manipulator arm. EIT* has not yet run on a real-world

system, but is being investigated by colleagues at Cornell University and TU Berlin

for task and motion planning and multiquery path planning, respectively.

Introduction 9

Path length

(a) RRT* (b) BIT* (c) ABIT* (d) AIT* (e) EIT*

Obstacle clearance

(f) RRT* (g) BIT* (h) ABIT* (i) AIT* (j) EIT*

Figure 1.2: An illustration of the benefits of optimization-, environment-, and intent-
specific information. The figure shows the search trees constructed by RRT*, BIT*, ABIT*,
AIT*, and EIT* to find an initial solution when optimizing path length, where optimization-
specific information is available (a–e), and obstacle clearance, where optimization-specific
information might not be available (f–j). The start and goal are represented by a black
dot () and circle (), respectively. Sampled states are represented by small black dots ().
Search-space obstacles are indicated in gray (). The initial solutions are shown in
yellow () and the search trees constructed to find them are shown in black (). Any
edge in these search trees that is not part of the initial solution delayed finding it. RRT*
does not leverage any problem-specific information to guide its search and fully evaluates
many edges that are not part of the initial solution (a, f). BIT* leverages optimization-
specific information and finds an initial solution after evaluating fewer edges than RRT*,
but only if optimization-specific information is available (b, g). ABIT* leverages the
available optimization-specific information more effectively and finds an initial solution
after evaluating fewer edges than BIT*, but again only if optimization-specific information
is available (c, h). AIT* leverages optimization- and environment-specific information and
finds an initial solution after evaluating fewer edges than ABIT*, but yet again only if
optimization-specific information is available (d, i). EIT* uses optimization-, environment-
and intent-specific information and finds an initial solution after evaluating the fewest
edges, regardless of whether optimization-specific information is available (e, j).

Chapter 2

Background
Definitions, related work, and assumptions

Contents
2.1 Path planning problems . 12

2.2 Graph-based search . 15

2.3 Sampling-based planning . 27

2.4 Analysis of sampling-based planners . 33

2.5 Discussion . 36

This chapter first introduces and formally defines two versions of the path planning

problem (Section 2.1) and then reviews two popular techniques to solve them (Sec-

tions 2.2 and 2.3). It then formally defines the performance guarantees of sampling-

based planners and states the assumptions required to prove them (Section 2.4).

The two widely studied problems of path planning are called feasible and optimal

path planning. The feasible problem is the task of finding a path between a start

and a goal that avoids obstacles and obeys system constraints. The optimal problem

is the task of finding a feasible path that optimizes a given objective.

Both of these versions are often too difficult to solve exactly due to challenging

search space properties, such as high dimensionality, complex constraints, adverse

obstacle configurations, or computationally expensive collision detection or cost eval-

uation. One approach to address these challenges is to use optimization-based solvers,

10

Background 11

xstart Xgoal

Xinvalid

Xvalid

(a) Path planning problem (b) Feasible paths (c) Optimal path

Figure 2.1: An illustration of the feasible and optimal path planning problems. The
search space, X, of a path planning problem is partitioned into the collectively exhaustive
but mutually exclusive sets of valid states, Xvalid, and invalid states, Xinvalid, and contains
a start state, xstart ∈ Xvalid, and a goal state or region, Xgoal ⊂ Xvalid (a). Any path
that connects the start state to a goal state and only goes through valid states solves the
feasible path planning problem (b). Only a path that optimizes a given objective, e.g.,
path length, solves the optimal path planning problem (c).

which limit their search to the neighborhood of an initial solution-guess. Popular ex-

amples include Covariant Hamiltonian Optimization for Motion Planning (CHOMP;

Ratliff et al., 2009; Zucker et al., 2013), Stochastic Trajectory Optimization for

Motion Planning (STOMP; Kalakrishnan et al., 2011), and TrajOpt (Schulman

et al., 2013, 2014). These algorithms can find solutions very quickly but only provide

local optimality guarantees and are not discussed in detail in this thesis.

Other approaches to address the challenges of path planning are graph-based

searches (Section 2.2) and sampling-based planners (Section 2.3), both of which

search a simplified approximation of the search space. These approaches can provide

global optimality guarantees, but they only hold either for a given discretization of

the search space or asymptotically in the limit of infinite computation time.

This thesis builds on efforts to unify graph-based search and sampling-based

planning. This allows the presented sampling-based algorithms to leverage different

types of information with informed graph-search algorithms and results in algorithms

that can solve the optimal path planning problem almost-surely asymptotically

under mild technical assumptions (Section 2.4).

Background 12

2.1 Path planning problems

There are two widely studied versions of the path planning problem (Figure 2.1).

This section provides informal descriptions and formal definitions for both versions

and presents intuitive reasons for why they are difficult to solve.

2.1.1 The feasible path planning problem

The feasible path planning problem requires finding a sequence of states, i.e., a

path, that is collision-free, leads from the start to the goal, and satisfies all system

constraints (Figure 2.1b). In robotic path planning the start is the initial state of

the robot and the goal is either an individual state, e.g., the desired position of a

mobile robot, or a set of multiple states, e.g., all joint angles that result in the same

end-effector position of a manipulator arm. The feasible path planning problem

is formally defined in Definition 1 (Karaman and Frazzoli, 2011).

Definition 1 (The feasible path planning problem). Let the search space of a path

planning problem be denoted by X, the subset of invalid states by Xinvalid ⊂ X, and

the subset of valid states by Xvalid := closure (X \Xinvalid). Let the start state and

the set of goal states be denoted by xstart ∈ Xvalid and Xgoal ⊂ Xvalid, respectively.

Let σ : [0, 1] → Xvalid be a continuous function with bounded total variation, i.e.,

a valid path, and let the set of all valid paths be denoted by Σ. The feasible path

planning problem is the task of finding any valid path from the start to the goal,

σ ∈ {σ′ ∈ Σ | σ′ (0) = xstart, σ
′ (1) ∈ Xgoal},

or reporting failure if no such path exists.

Many feasible problems have an infinite number of solutions, but finding any

one of them in real-world applications can be challenging for various reasons. Some

applications, such as robotic manipulator arms, might have many degrees of freedom

Background 13

which results in high-dimensional search spaces. These spaces are difficult to search

because the number of states required to approximate them with a given dis-

persion (i.e., sample-density) grows at least exponentially in dimension for any

sampling scheme (Sukharev, 1971).

Other applications, such as autonomous cars, might have nonholonomic con-

straints (i.e., forced couplings between derivatives of state dimensions) or dynamic

constraints (i.e., large momentum compared to the controllable forces), both of

which can constrain local movement. These spaces are difficult to search because

these local constraints increase computational cost and must be taken into account

in addition to the global constraints imposed by environmental obstacles.

Still other applications, such as humanoid robots carrying glasses of water, might

have constraints placed on their configurations, such as keeping the glasses level

throughout their entire motion. These search spaces are difficult to search because

the set of all states that satisfy such manifold constraints has a measure of zero,

which makes it difficult to generate states in this set (Kingston et al., 2018, 2019).

Another category of applications, such as assessing surgical tolerances for medical

implants, often require high-resolution collision detection with high-fidelity models

of the implants which usually have complex geometries. These spaces are difficult to

search because checking for collision between complex geometries is computationally

expensive and planning algorithms typically check many states for collision.

These challenges are often combined in path planning problems that emerge

from modern applications. For example, the NASA/JPL-Caltech rover mentioned

in Chapter 1 (Figure 1.1a), combines complicated system constraints with complex

collision detection (Section 3.5). The difficulty of the feasible planning problem is also

confirmed in theory, as the problem is proven to be PSPACE-complete (Canny, 1988).

Background 14

2.1.2 The optimal path planning problem

The feasible path planning problem is neutral about solution quality, but many

applications require high-quality paths. The task of finding a feasible solution that

optimizes a given objective is called the optimal path planning problem (Figure 2.1c).

The optimal problem is at least as difficult as the feasible problem as any optimal

solution is also a feasible solution. But while feasible problems often have an infinite

number of solutions, there usually exist fewer optimal solutions, which makes the

optimal problem often significantly more difficult than the feasible problem.

Optimal planning is further complicated simply because it requires evaluating

path quality, which can be computationally expensive. For example, optimizing

obstacle clearance (i.e., the distance to the nearest obstacle) requires computing the

clearance of potential solutions, which is at least as expensive as collision detection,

because a state with positive clearance must be collision free. The optimal path

planning problem is formally defined in Definition 2 (Karaman and Frazzoli, 2011).

Definition 2 (The optimal path planning problem). Let the search space of a path

planning problem be denoted by X, the subset of invalid states by Xinvalid ⊂ X, and

the subset of valid states by Xvalid := closure (X \Xinvalid). Let the start state and

the set of goal states be denoted by xstart ∈ Xvalid and Xgoal ⊂ Xvalid, respectively.

Let σ : [0, 1]→ Xvalid be a continuous function with bounded total variation, i.e., a

valid path, and let the set of all valid paths be denoted by Σ. Let the optimization

objective be defined by a cost function, c : Σ → [0,∞), that maps each path to a

nonnegative real number. The optimal path planning problem is the task of finding

a path, σ∗ ∈ Σ, from the start to the goal with minimum cost,

σ∗ := arg min
σ∈Σ

{c (σ) | σ (0) = xstart, σ (1) ∈ Xgoal},

or reporting failure if no such path exists.

Background 15

(a) (b) (c)

Figure 2.2: An illustration of the difficulty of discretizing continuous path planning
problems. Graph-search algorithms cannot directly solve a continuous problem (a). The
problem must first be discretized, but selecting a good resolution is difficult a priori.
A coarse resolution requires few computational resources to be searched but may not
contain any solution or only solutions of low quality in the continuous sense of the
problem (b). A fine resolution may contain higher-quality solutions, but may require too
much computational effort to be searched, especially in high-dimensional search spaces (c).

2.2 Graph-based search

A popular approach to solve path planning problems are graph-based searches. These

algorithms solve discretized versions of the path planning problem by searching those

discretizations in a principled manner, potentially leveraging information about

the optimization objective and the computational effort required for certain search

operations. They can provide strong performance guarantees, but these guarantees

only hold for the given discretization. For example, Dijkstra’s algorithm (Dijkstra,

1959) is guaranteed to find the optimal solution when edge costs are nonnegative,

but that solution is only optimal for the given discretization and can be arbitrarily

bad in the continuous sense of the original problem.

Graph-based search algorithms require discrete structures and cannot directly

be applied to continuous search spaces. Choosing a good discretization a priori,

i.e, before solving a problem, is difficult (Figure 2.2). If the discretization is too

coarse, then the algorithm might return a solution of insufficient quality in the

continuous sense or fail to return any solution at all because the resolution is too

Background 16

low to render small gaps between obstacles. If the discretization is too fine, then

the algorithm might take unnecessarily long to return a solution or fail to return

any solution at all because it exceeds the allocated computation time or memory,

especially in high-dimensional search spaces.

This difficulty can be lessened by discretizing the search space adaptively (Moore

and Atkenson, 1995; Yahja et al., 1998; García et al., 2014), searching multiple

discretizations with different resolutions simultaneously (Du et al., 2020), or by

applying graph-search techniques to anytime, sampling-based approximations. A

detailed review of the first two approaches exceeds the scope of this thesis, but

the last approach is implemented by the algorithms presented in this thesis and

discussed in detail in Chapters 3–5.

Graph-search algorithms are effective at solving numerous problems and many

of these problems have specific characteristics that can be exploited with specialized

algorithms. This thesis focuses on the literature that presents the ideas and graph-

search algorithms that are most relevant to the work presented in Chapters 3–5.

These ideas and algorithms can be categorized in multiple ways. Algorithms can

be categorized according to what they aim to achieve (e.g., finding a sufficiently good

solution as fast as possible) and how they work (e.g., inflating remaining solution-cost

estimates when ordering their searches). This thesis primarily categorizes algorithms

in terms of what they aim to achieve and secondarily in terms of how they achieve it.

2.2.1 Optimal search

Graph-search algorithms can be used to find the optimal path between two vertices

in a graph. For example, given the road network of the United Kingdom, a person

in Cambridge might desire to find the shortest path to Oxford.

Dijkstra’s algorithm is a common choice to solve such problems. It starts by

evaluating the cost to reach each state that is connected to the start (e.g., the

Background 17

(a) (b) (c)

Figure 2.3: An illustration of how Dijkstra’s algorithm searches a discretized planning
problem. The search progresses outwards from the start in order of increasing cost-to-come
(a, b). Dijkstra’s algorithm has found the resolution-optimal solution when the next state
to be expanded is the goal (c; Dijkstra, 1959). Note that the number of expanded states
would be much larger if the search space had no boundaries.

road-distance from Cambridge). These states are then inserted into a queue and

ordered by their cost from the start, called their cost-to-come or g-value. Dijkstra’s

algorithm then repeatedly selects the state in this queue with the lowest cost-to-

come, removes it from the queue, updates the cost-to-come of its neighboring states,

and inserts them into the queue (Figure 2.3). The optimal path is found when the

vertex that is about to be selected is a goal state (Dijkstra, 1959).

Additional information can improve the performance of graph-search algorithms.

For example, two vertices in the road network of the United Kingdom cannot be

closer than their air-distance. Such problem-specific information can be leveraged

by informed search algorithms, such as A* (Hart et al., 1968), to improve on the

performance of uninformed algorithms, such as Dijkstra’s.

A* can leverage such information if it is expressed as a heuristic function that

provides an estimate of the remaining solution cost from any state, called the

cost-to-go or h-value of that state (e.g., the air-distance to Oxford). Such a heuristic

is called admissible if it never overestimates the true cost and consistent if it satisfies

a specific triangle inequality. Given an admissible heuristic, A* finds an optimal

solution, and given a consistent heuristic, A* does so optimally efficiently with

Background 18

(a) (b) (c)

Figure 2.4: An illustration of how A* searches a discretized planning problem. The
search progresses from the start toward the goal in order of increasing total potential
solution cost (a, b). As in Dijkstra’s algorithm, A* has found the resolution-optimal
solution when the goal is the next state to be expanded (c; Hart et al., 1968). Note that
A* expands far fewer states than Dijkstra’s algorithm (cf. Figure 2.3).

respect to the number of expanded vertices (Dechter and Pearl, 1985).

A* is equivalent to Dijkstra’s algorithm except that it processes vertices in

order of their current cost-to-come plus their estimated cost-to-go, called their total

potential solution cost or f -value (e.g., the road-distance from Cambridge plus the

air-distance to Oxford). This small modification allows incorporating additional,

problem-specific information in a principled manner and can significantly improve

search performance (Figure 2.4). A* is used as the forward search in AIT* and the

reverse search in EIT* and will be discussed in detail in Chapters 4 and 5.

The performance of uninformed search can also be improved by using a bidirec-

tional search instead of additional problem-specific information (Helgason et al.,

1993; Sturtevant and Felner, 2018). A bidirectional search algorithm simultaneously

builds two search trees, one rooted at the start and one at the goal, and finds

solutions by connecting these trees (Figure 2.5). Dantzig (Section 17.3; 1963) is

attributed to have first published the idea for a bidirectional search algorithm but

does not present a formal algorithm description. According to the interpretation

of Pohl (Section 1.4; 1969), Dantzig’s algorithm is a bidirectional version of Dijk-

stra’s that alternately expands vertices in the forward and reverse search in each

Background 19

(a) (b) (c)

Figure 2.5: An illustration of how a bidirectional Dijkstra’s algorithm searches a dis-
cretized planning problem. The search simultaneously progresses outward form the start
and the goal in order of increasing cost-to-come and cost-to-go, respectively (a, b). Bidi-
rectional Dijkstra’s algorithm has found the resolution-optimal solution when the sum
of the lowest cost-to-come values in each queue is larger or equal to the current solution
cost (c; Sturtevant and Felner, 2018). Note that this bidirectional version of Dijkstra’s
algorithm expands fewer states than the unidirectional version (cf. Figure 2.3).

iteration. Other presented expansion schemes for a bidirectional Dijkstra’s include

expanding the vertex with the minimum cost-to-come of both queues (Nicholson,

1966) and expanding the vertex with the least cost-to-come in the queue with more

vertices (Section 3.2; Pohl, 1969). Various termination conditions for bidirectional

Dijkstra’s are presented by Dantzig (Section 17.3; 1963), Nicholson (1966), Dreyfus

(1969), Pohl (Section 1.6; 1969), and Holte et al. (2017).

Effectively combining the benefits of informed and bidirectional search is diffi-

cult (Figure 2.6). The Bidirectional Heuristic Path Algorithm (BHPA; Pohl, 1971)

is a bidirectional version of A*, similar to bidirectional Dijkstra’s algorithm. The

heuristics in BHPA estimate the optimal cost-to-go to the root of the opposite

search tree and are called front-to-end heuristics. A solution is found once the

trees contain a common vertex but optimality cannot be guaranteed until the total

potential solution cost of a vertex in one of the queues or the sum of the least

cost-to-come in both queues are equal to or greater than the current solution cost.

BS* (Kwa, 1989) modifies BHPA to avoid unnecessary expansions. MM (Holte

Background 20

(a) (b) (c)

Figure 2.6: An illustration of how a bidirectional A* searches a discretized planning
problem. The search simultaneously progresses from the start toward the goal and
vice versa in order of total potential solution cost (a, b). Bidirectional A* has found
the resolution-optimal solution when the minimum potential solution cost in either the
forward or reverse queue is larger than the current cost (c; Sturtevant and Felner, 2018).
Note that this bidirectional version of A* expands more states than the unidirectional
version (cf. Figure 2.4).

et al., 2017) uses a search order that guarantees that its A* searches meet in the

middle. Near-optimal Bidirectional Search (NBS; Chen et al., 2017) is optimal in

the sense that no other front-to-end algorithm expands fewer vertices in the worst

case but none of these algorithms consistently outperform bidirectional Dijkstra’s

algorithm and unidirectional A*.

Several explanations for why these traditional front-to-end algorithms underper-

form have been presented by Pohl (Section 10.2; 1969), Kwa (1989), Kaindl and

Kainz (1997), Edelkamp and Schrödel (Section 9.6.2; 2011), and Barker and Korf

(2015), but a recent analysis shows that if the minimum vertex cover of a bipartite

must-expand graph is bidirectional, then there exists a front-to-end algorithm that

outperforms A* (Sturtevant et al., 2020).

A different approach to front-to-end informed bidirectional search is presented

by Kaindl and Kainz (1997). Instead of alternating between the forward and reverse

searches, their approach first searches in reverse up to a user-specified depth and

then uses the information gained in this reverse search to create a more accurate,

Background 21

but still admissible, heuristic for the forward search.

Another strategy that incorporates the information revealed in one direction in

the estimated cost-to-go of the other direction is to estimate the optimal cost-to-go

to a vertex in the opposite search queue instead of the opposite root. Such estimates

are called front-to-front heuristics. Examples of such algorithms include the Bidirec-

tional Heuristic Front-to-Front Algorithm (BHFFA; de Champeaux and Sint, 1977;

de Champeaux, 1983), Generalized Pohl (GP; Davis et al., 1984), D-Node retarget-

ing (Politowski and Pohl, 1984), and Iterative Deepening BHFFA (IDBHFFA; Arefin

and Saha, 2010). Front-to-front approaches avoid many of the problems of tradi-

tional front-to-end approaches but computing the front-to-front heuristic is often too

computationally expensive to be beneficial in practice (Sturtevant and Felner, 2018).

Perimeter Search (PS; Dillenburg and Nelson, 1994) and Bidirectional Iterative-

Deepening A* (BIDA*; Manzini, 1995) limit the computational complexity of front-

to-front search in a manner similar to Kaindl and Kainz (1997). Instead of alternating

between the forward and reverse searches, these algorithms first perform a reverse

search up to a user-specified depth and then perform a forward search with front-

to-front heuristics. This limits the computational complexity because the number

of potential targets for the heuristic is limited by the depth of the reverse search.

Which of the resolution-optimal algorithms presented in this section performs

best depends on various factors (e.g., whether problem-specific information is

available and how much memory can be allocated). But sometimes it is unnecessary

to find the resolution-optimum and it suffices to find a solution that is good enough,

in which case a different family of algorithms often performs better.

2.2.2 Bounded suboptimal search

Bounded suboptimal search algorithms find a solution that may not be optimal but

whose cost is guaranteed to be within a factor of the optimum (e.g., not more than

Background 22

(a) (b) (c)

(d) (e) (f)

Figure 2.7: An illustration of how WA* with an inflation factor of two (a–c) and ten (d–f)
searches a discretized planning problem. The search of WA* progresses from the start
toward the goal, as in A*, but the inflated heuristic biases it towards states that are
estimated to have a lower cost-to-go (a, b and d, e). In this example, WA* finds much
better solutions than its suboptimality bound guarantees. When the inflation factor (and
suboptimality bound) is two, WA* finds the resolution-optimum (c). When the inflation
factor (and suboptimality bound) is ten, WA* finds a solution that is only about 27%
longer than the resolution-optimum (f).

ten percent longer than the optimal road-distance from Cambridge to Oxford). These

algorithms often find solutions faster than their resolution-optimal counterparts.

A popular approach to achieve faster solution times with bounded suboptimality

is to multiply the admissible heuristic in A* with an inflation factor greater than

one. This approach is called Weighted A* (WA*; Pohl, 1970) and biases the search

towards vertices that have small cost-to-go values. The cost of the solution returned

by WA* is guaranteed to be no worse than the inflation factor times the optimal

solution cost (Pohl, 1970). A high inflation factor often results in fast solution

Background 23

times, except when the cost heuristic is very inaccurate and in domains where the

quality of a path does not correlate well with the computational effort required to

find it (Wilt and Ruml, 2012). A high inflation factor also often leads to solutions

that are much better than the guaranteed suboptimality bound (Figure 2.7), which

can be exploited to improve performance (Thayer and Ruml, 2008).

WA* speeds up its search by inflating an admissible heuristic. Inadmissible

heuristics can be an additional source of information that can be leveraged in

bounded suboptimal search. For example, if the problem is to find the fastest

path from Cambridge to Oxford instead of the shortest path, then traffic data can

be an additional source of information. An admissible heuristic can be created

by considering the speed limit and assuming no traffic, but this will not be very

accurate. An inadmissible heuristic can instead incorporate historical traffic data

specific for each road segment, even if this data may overestimate the traffic on a

particular day. Multi-Heuristic A* (MHA*; Aine et al., 2014, 2016) is a version of A*

that uses an admissible heuristic to guarantee bounded suboptimality but can use

multiple arbitrarily inadmissible heuristics to guide its search. A*-Connect (Islam

et al., 2016; Cheng et al., 2019) applies the ideas of MHA* to bidirectional search

and calculates an inadmissible front-to-front heuristic by computing the heuristic

between a state in one search and the last expanded state in the other search.

The heuristics used by A* and many of its variants estimate the remaining

solution quality. But if the intent of an algorithm is to find an acceptable solution

as fast as possible, then performance can be improved by also considering the

required computational effort (Wilt and Ruml, 2015). A∗ε (Pearl and Kim, 1982)

and its bidirectional version (Köll and Kaindl, 1993) use an admissible heuristic to

guarantee bounded suboptimality, similar to MHA*, but can guide its search with

an effort heuristic that estimates the remaining number of vertex expansions on

each path candidate. Explicit Estimation Search (EES; Thayer and Ruml, 2010,

2011) also uses an admissible heuristic to guarantee bounded suboptimality but can

guide its search with both an inadmissible cost and an inadmissible effort heuristic.

Background 24

These algorithms are preferred to their resolution-optimal counterparts when

computational time (and/or memory) is not sufficient to find the optimum. But

exactly how much time is available is often unknown a priori. If only a short amount

of time ends up being available, then a suboptimal solution is better than no solution,

but if a lot of time is available, then the resolution-optimum is likely preferred.

2.2.3 Anytime search

Anytime algorithms aim to find a solution as fast as possible and then use the

remaining computational time to improve it. Anytime A* (AA*; Zhou and Hansen,

2002; Hansen and Zhou, 2007; Vadlamudi et al., 2011) is a version of WA* that

simply continues its search with an inflated heuristic after the first solution is found

until it converges to the optimal solution.

Restarting Weighted A* (RWA*; Richter et al., 2010) instead restarts each

search once it is finished but with a lower inflation factor. The optimal solution is

found once the inflation factor is one. This approach can duplicate search effort

because each search tree is discarded after the search finishes. Anytime Repairing

A* (ARA*; Likhachev et al., 2004) is similar to RWA* but avoids duplicated search

effort by keeping track of suboptimally connected vertices and only repairing these

connections and cascading changes as necessary. ARA* is the basis for the forward

search algorithm used in ABIT* and will be described in detail in Chapter 3.

RWA* and ARA* require user-specified schedules for updating their inflation

factors. Anytime Nonparametric A* (ANA*; van den Berg et al., 2011) is similar

to ARA* but does not require such a schedule and instead adaptively reduces the

inflation factor to expand the most promising vertex at each iteration.

Inadmissible cost and effort heuristics can also be leveraged in anytime search.

To leverage such information, Anytime Multi-Heuristic A* (A-MHA*; Natarajan

et al., 2019) extends MHA* and Anytime Explicit Estimation Search (AEES; Thayer

Background 25

et al., 2012) extends EES to work in an anytime manner. AEES is the basis of the

forward search algorithm used in EIT* and will be described in detail in Chapter 5.

All of the algorithms reviewed so far are designed to search a static graph but

many applications require finding paths on a dynamic graph, i.e., a sequence of

similar graphs. All of the reviewed algorithms could search each graph independently,

but more efficient algorithms exist that reuse information from previous searches.

2.2.4 Incremental search

Algorithms that are designed to search dynamic graphs are called incremental.

Lifelong Planning A* (LPA*; Koenig et al., 2004; Likhachev and Koenig, 2005)

is an incremental graph-search algorithm that first searches a graph like A* but

finds subsequent solutions in similar graphs more efficiently than rerunning A* from

scratch. It achieves this by checking how the modification of the graph changed the

cost-to-come of vertices with respect to when they were last expanded and cascading

these cost changes through the search tree as necessary. A similar approach is used

in D* (Stentz, 1995) and D* Lite (Koenig and Likhachev, 2002). LPA* is used as

the reverse search in AIT* and will be discussed in detail in Chapter 4.

Truncated Lifelong Planning A* (TLPA*; Aine and Likhachev, 2016) is a

version of LPA* that can speed up solution times on modified graphs when bounded

suboptimal solutions are acceptable. It achieves this by only expanding vertices

until it can guarantee that the current solution is within the suboptimality bound.

Other approaches to incremental A* searches exist, such as updating the heuristic

between successive searches (Koenig and Likhachev, 2005, 2006; Sun et al., 2008;

Matsuta et al., 2010) and rolling back the search until the modifications of the

graph do not affect the search tree anymore (Sun and Koenig, 2007).

Incremental and anytime search are unified in Anytime D* (AD*; Likhachev

et al., 2005, 2008) and Anytime Truncated D* (ATD*; Aine and Likhachev, 2016).

Background 26

These algorithms search each graph in an anytime manner, similar to ARA*, but

also find subsequent solutions to similar graphs efficiently, similar to D* and TLPA*.

Many of the algorithms that have been reviewed so far leverage cost and effort

heuristics to improve performance. This performance gain is determined by the

amount of information contained in the heuristics. The trivial zero-heuristic cannot

improve search performance, but a perfectly accurate heuristic makes the search

trivial. Instead of designing algorithms that better leverage existing problem-specific

information, the performance of existing graph-search algorithms can be improved

by increasing the accuracy of the existing information.

2.2.5 Improving graph-search heuristics

Increasing the accuracy of problem-specific information has improved performance

in many problem domains, including the 15-Puzzle (Culberson and Schaeffer, 1996),

Rubik’s Cube (Korf, 1997), and robot vacuum on a grid (Thayer et al., 2011).

Pattern databases (Culberson and Schaeffer, 1996; Korf, 1997; Culberson and

Schaeffer, 1998) are precomputed tables of exact solution costs to potentially

simplified subproblems of a problem domain. The highest solution cost of any

remaining subproblem in an ongoing search can be used as an accurate heuristic in

an informed search. Additive pattern databases (Felner et al., 2004) are constructed

such that the heuristic remains admissible when the solution costs of all remaining

subproblems are combined, which can improve the accuracy of these heuristics.

Hierarchical A* (HA*; Holte et al., 1996) uses homomorphic transformations

of the search space to create abstractions in which multiple states in the original

space are mapped to a single state in the abstract space. These abstractions are

then searched to create a heuristic for the original search space. This can result

in fewer expanded states, but the presented technique is only shown to work for

graphs with uniform edge costs. Hierarchical Cooperative A* (HCA*; Silver, 2005)

Background 27

and Windowed HCA* (WHCA*; Silver, 2005) are multiagent versions of HA* that

use a version of A*, called Reverse Resumable A* (RRA*; Silver, 2005), to search

the abstraction from the goal to the start. The cost of the optimal paths to states

from the goal in the abstract space is used as the heuristic for the corresponding

states in the original space. If the forward search in the original space is about to

process a state whose abstract representation has not been processed by RRA*,

then RRA* is resumed until it finds the optimal path to the abstract state that

corresponds to the state being processed by the forward search.

Thayer et al. (2011) present a technique to improve the accuracy of a heuristic

during an ongoing search that is not specific to a particular search algorithm. Their

method uses a relationship between the cost-to-go of a state and the cost-to-go of

its best child to define a single-step error in the heuristic. The mean single-step

error can then be calculated and used to improve the accuracy of the heuristic, but

it is not guaranteed that the improved heuristic remains admissible.

There exists a lot more research on graph-search algorithms, but its presentation

exceeds the scope of this thesis. But even the limited number of reviewed algorithms

and techniques demonstrate that graph-search was and is an active area of research

that has been and continues to be an incubator for many excellent ideas. Some of

these ideas have been incorporated in sampling-based planning, but many have not,

as will be evident by the review on sampling-based planners in the following section.

2.3 Sampling-based planning

The graph-search algorithms reviewed in Section 2.2 have strong formal guarantees

on solution quality and algorithm efficiency but can only directly be applied to

planning problems with discrete or discretized search spaces. The sampling-based

planners reviewed in this section can instead directly solve planning problems with

continuous search spaces, but have weaker formal guarantees that often only hold

probabilistically and in the limit of infinite computation time (Section 2.4).

Background 28

Most sampling-based algorithms are designed for one of two application cate-

gories. One category requires finding multiple paths between different starts and

goals through the same environment. An example application of this category is a

robot manipulator arm that works in a static environment. Algorithms designed

for this category are called multiquery planners and reviewed in Section 2.3.1.

The other category requires finding a single path per environment. An example

application of this category is an autonomous mobile robot that moves through

an unstructured environment. Algorithms designed for this category are called

single-query planners and reviewed in Section 2.3.2. The algorithms presented in this

thesis are single-query planners but incorporate ideas from the multiquery literature.

2.3.1 Multiquery planning

Most multiquery algorithms separate the approximation and search of a problem into

two distinct phases. Probabilistic Roadmaps (PRM; Overmars, 1992; Kavraki and

Latombe, 1994; Overmars and Švestka, 1994; Kavraki et al., 1996) first approximate

the entire search space by uniformly sampling a user-specified number of states and

finding valid connections between nearby states with a local planner. This local plan-

ner often simply checks the straight-line connection. The resulting structure is an

RGG embedded in the search space. Each sample is a vertex in the graph and each

valid connection an edge between two vertices. When given a query, PRM finds valid

connections from the start and goal to the graph with its local planner and then finds

a valid path between the start and goal with a graph-search algorithm (Figure 2.8).

PRM has been extended and modified in many ways. Some extensions sample

states near obstacles (Amato and Wu, 1996; Amato et al., 1998b), others far

away from them (Wilmarth et al., 1999; Holleman and Kavraki, 2000; Pisula

et al., 2000; Lien et al., 2003; Yang and Brock, 2004). Some aim to sample

narrow passages (Hsu et al., 1998, 2003; Saha et al., 2005), others use Gaussian

Background 29

(a) (b) (c)

Figure 2.8: An illustration of how PRM searches a continuous planning problem. The
first phase of PRM samples states in the search space (a) and creates an embedded
graph by connecting nearby states if these local connections are valid (b). The second
phase of PRM connects the start and goal of a query to this embedded graph and uses a
graph-search algorithm to find a solution (c).

sampling (Boor et al., 1999), deterministic sampling (Branicky et al., 2001; Geraerts

and Overmars, 2004; LaValle et al., 2004; Yershova and LaValle, 2004; Janson

et al., 2018; Tsao et al., 2020), sampling biased by information theory (Burns

and Brock, 2003, 2004), or a combination of different sampling strategies (Hsu

et al., 2005). Some extensions use different local planners (Amato et al., 1998a;

Isto, 2002; Akinc et al., 2003; Bekris et al., 2003; Plaku et al., 2005; Cadmus To

et al., 2019), or different connectivity models (Amato et al., 1998a; Solovey et al.,

2018; Solovey and Kleinbort, 2020). Some extensions are specialized for flexible

objects (Kavraki et al., 1998b; Anshelevich et al., 2000; Bayazit et al., 2002), others

for ligand binding (Singh et al., 1999; Bayazit et al., 2001b; Apaydin et al., 2001),

protein folding (Song and Amato, 2001; Apaydin et al., 2001; Song and Amato,

2004), or dynamic environments (Leven and Hutchinson, 2002). Some extensions

are guided by a human operator (Bayazit et al., 2001a), and others predict invalid

edges through matrix completion (Esposito and Wright, 2019).

The formal properties of a simplified version of PRM have been studied exten-

sively (Barraquand et al., 1997; Kavraki et al., 1998a,c; Hsu et al., 2006; Karaman

and Frazzoli, 2011). A famous result is that a version of PRM, called PRM*,

Background 30

almost-surely asymptotically converges to the optimal solution in the limit of

infinite samples when the (average) number of considered neighbors grows loga-

rithmically with the number of samples (Karaman and Frazzoli, 2011). This result

can be extended to deterministic asymptotic optimality when random sampling is

replaced with a deterministic sampling strategy (Janson et al., 2018).

2.3.2 Single-query planning

Building an approximation of the entire search space is justified if solving multiple

queries utilizes the whole approximation. A single query often only requires an

approximation of a specific region of the search space and can in these cases be

solved more efficiently with a query-specific approximation.

One approach to achieve this is to modify PRM to only check samples and

connections for validity if they could be part of a solution. Lazy PRM (Bohlin and

Kavraki, 2000) initially assumes that all samples and connections are valid. It then

finds a path between the start and goal on this graph, and only checks the samples

and connections on this path for collision. If collisions are detected, then the corre-

sponding samples and connections are removed from the graph, a new path is found,

and the process is repeated. A similar approach is used in Fuzzy PRM (Nielsen and

Kavraki, 2000), Customizable PRM (C-PRM; Song et al., 2001), their generalizing

framework (Song et al., 2003), and Lazy PRM* (Hauser, 2015).

Another approach to avoid the computational cost of approximating the entire

search space is to simultaneously build and search a query-specific approximation.

RRT (LaValle, 1998; LaValle and Kuffner Jr., 1999, 2001) builds a search tree by

first randomly sampling a state in the search space and extending a path from

the start toward this new sample. It then samples a new state and extends the

closest state in its current search tree toward that sample. This process is repeated

until the goal is reached (Figure 2.9). To bias the search toward the goal, RRT

Background 31

η

(a) (b) (c)

Figure 2.9: An illustration of how RRT searches a continuous planning problem. RRT
incrementally builds a search tree by first sampling a state and taking a step of length η
from the start towards that state (a). It then continues to sample states and step towards
them from the closest state in its search tree (b). RRT steps towards the goal instead of a
sampled state with a user-specified probability. If the goal can be connected to the tree,
then RRT has found a solution (c).

selects the goal state (or directly samples the goal region) with a user-specified

probability instead of randomly sampling a state in the search space. This is

especially important if the goal is a single state (or a set with zero measure), as

otherwise the tree almost never connects to the goal.

RRT has been extended and modified in many ways. Some extensions build

bidirectional search trees (Kuffner Jr. and LaValle, 2000; Klemm et al., 2015;

Qureshi and Ayaz, 2015; Burget et al., 2016; Nayak and Otte, 2021), others ensure

locally or globally optimal connections within a single tree (Karaman and Frazzoli,

2010a,b; Hwan et al., 2011; Karaman et al., 2011; Karaman and Frazzoli, 2011;

Arslan and Tsiotras, 2013, 2015; Salzman and Halperin, 2014; Arslan et al., 2017).

Some extensions use different nearest neighbor searches (Cheng and LaValle, 2001;

Karaman and Frazzoli, 2013), or sampling strategies (Lindemann and LaValle, 2004;

Jaillet et al., 2008; Dalibard and Laumond, 2008; Shkolnik and Tedrake, 2009;

Jaillet et al., 2010; Berenson et al., 2011; Devaurs et al., 2013, 2014; Gammell

et al., 2014; Arslan and Tsiotras, 2015; Devaurs et al., 2016; Gammell et al., 2018).

Some extensions modify the tree growth (Urmson and Simmons, 2003; Bertram

Background 32

et al., 2006; Ferguson and Stentz, 2006; Rodriguez et al., 2006; Ferguson and

Stentz, 2007; Denny et al., 2013; Ko et al., 2014; Wang et al., 2017), others the

distance metric (Glassman and Tedrake, 2010; Perez et al., 2012; Sivamurugan

and Ravindran, 2014; Cadmus To et al., 2020). Some extensions sample states

near obstacles (Yershova et al., 2005; Jaillet et al., 2005; Adiyatov et al., 2017),

others near the current solution (Akgun and Stilman, 2011; Nasir et al., 2013).

Some extensions are specialized for dynamic environments (Bruce and Veloso, 2002;

Ferguson et al., 2006; Zucker et al., 2007; Otte and Frazzoli, 2015, 2016; Connell

and Manh La, 2017), others for deformable systems (Lien and Amato, 2006), or

molecular disassembly (Cortés et al., 2007).

The formal properties of different versions of RRT have been studied exten-

sively (LaValle and Kuffner Jr., 2001; Karaman and Frazzoli, 2011; Caron et al.,

2014; Kunz and Stilman, 2014; Kleinbort et al., 2019). A famous result is that a

version of RRT, called RRT*, that ensures locally optimal connections is almost-

surely asymptotically optimal when the (average) number of considered neighbors

grows logarithmically with the number of samples (Karaman and Frazzoli, 2011).

Instead of sampling a state in the search space to grow the tree towards, a

query-specific approximation can also be built by first selecting a vertex of the tree

to grow from and then sampling the direction in which to grow the tree. Expansive

Space Trees (EST; Hsu et al., 1997; Phillips et al., 2004) build two trees in this

manner, one rooted at the start and one at the goal, and bias their vertex selection

to vertices with few neighbors. The sampling of direction can be uniform, but can

also be biased by heuristic costs computed from work-space decompositions (Plaku,

2013) or search space abstractions (Le and Plaku, 2014).

One drawback of these incremental approaches is that they tightly couple their

random incremental approximations with their searches. This results in searches

that process the randomly sampled states of the continuous search incrementally,

which can be inefficient. Fast Marching Trees (FMT*; Janson and Pavone, 2013;

Background 33

Janson et al., 2015) instead decouples the approximation from the search by first

sampling a user-specified number of states and then searching these states in order

of increasing cost-to-come with an efficient fast marching method (Sethian, 1996). If

the resulting solution is not of sufficient quality, then FMT* has to be restarted from

scratch with a larger number of samples. FMT* is reviewed in detail in Section 3.1.1.

BIT* (Gammell et al., 2015, 2020) also decouples the approximation from

the search, but continuously improves the quality of its solution and leverages

optimization-specific information with informed graph-search techniques. It samples

batches of states and views these samples as a series of increasingly dense, edge-

implicit RGGs. The edges in these RGGs are processed in order of their total

potential solution cost, similar to A*. BIT* does so efficiently by reusing information

from previous searches, similar to TLPA*. BIT* is reviewed in detail in Section 3.1.2.

The algorithms presented in this thesis are conceptual successors of BIT* in that

they use similar series of RGG approximations and use graph-search techniques

to leverage optimization-specific information. In contrast to BIT*, the presented

algorithms either use the available optimization-specific information more effectively

or leverage additional sources of information, such as the information implicit in

the observed distribution of valid samples and information about the computational

effort required to find solutions. The literature reviews for each presented algorithm

present more detailed descriptions of the sampling-based algorithms that are directly

related to them (Sections 3.1, 4.1, and 5.1).

2.4 Analysis of sampling-based planners

Sampling-based planners are often evaluated probabilistically over all possible real-

izations of a distribution as a function of the number of samples. Algorithms whose

probability of solving the feasible path planning problem approaches one as the num-

ber of samples approaches infinity are called probabilistically complete. Probabilistic

completeness is formally defined in Definition 3 (Karaman and Frazzoli, 2011).

Background 34

Definition 3 (Probabilistic completeness). A sampling-based path planning algo-

rithm is called probabilistically complete if the probability of it returning a feasible

path goes to one as the number of samples goes to infinity (if a feasible path exists),

lim inf
q→∞

P (Σq 6= ∅) = 1,

where q is the number of samples and Σq ⊂ Σ is the set of valid paths from the

start to the goal found by the planner from those samples.

Algorithms that asymptotically solve the optimal planning problem as the num-

ber of samples approaches infinity with a probability of one are called almost-surely

asymptotically optimal. Almost-sure asymptotic optimality implies probabilistic

completeness and is formally defined in Definition 4 (Karaman and Frazzoli, 2011).

Definition 4 (Almost-sure asymptotic optimality). A sampling-based path planning

algorithm is called almost-surely asymptotically optimal if it has a unity probability

of asymptotically solving the optimal path planning problem as the number of samples

approaches infinity (if an optimal solution exists),

P

(
lim sup
q→∞

min
σ∈Σq

{c (σ)} = c∗
)

= 1,

where q is the number of samples, Σq ⊂ Σ is the set of valid paths from the start to

the goal found by the planner from those samples, c : Σ→ [0,∞) is the cost function,

and c∗ is the optimal solution cost.

2.4.1 Assumptions

Formally analyzing sampling-based planners requires making assumptions about

the path planning problem (e.g., Gammell and Strub, 2021). The work presented

in this thesis builds on the results of Karaman and Frazzoli (2011) and makes the

same assumptions (Sections 2.4.1.1–2.4.1.4).

Background 35

2.4.1.1 Search space assumption

The search space of the planning problem is assumed to be an open, n-dimensional

unit hypercube, X := (0, 1)n, n ≥ 2. The results of this thesis can be applied to other

search spaces, such as SE (2) or SE (3), using the results of Kleinbort et al. (2020).

2.4.1.2 Cost function assumptions

Let σ1, σ2 ∈ Σ be two paths such that σ1 (1) = σ2 (0), and let (σ1|σ2) ∈ Σ de-

note their concatenation,

(σ1|σ2)(t) :=


σ1 (2t) for t ∈ [0, 1/2]

σ2 (2t− 1) for t ∈ (1/2, 1].

The cost of any path, σ := (σ1|σ2), is assumed to be lower bounded by the

cost of any of its segments,

∀ σ := (σ1|σ2), c (σ) ≥ max{c (σ1) , c (σ2)},

and upper bounded by a multiple of its total variation,

∃ k ∈ [0,∞), c (σ) ≤ kTV (σ) ,

where TV (·) denotes the total variation of a path (Karaman and Frazzoli, 2011).

It is also assumed that only trivial paths, which consist of a single state,

have zero cost,

c (σ) = 0 ⇐⇒ ∀ t ∈ [0, 1], σ (t) = σ (0) .

Background 36

2.4.1.3 Obstacle assumption

The obstacle configuration of the optimal path planning problem is assumed to

allow for a valid path from the start to the goal that remains a fixed distance,

δ > 0, from its nearest obstacles for its entire length,

∃ σ ∈ Σ, δ ∈ (0,∞), such that ∀ t ∈ [0, 1], Bδ,n (σ (t)) ⊂ Xvalid,

where Bδ,n (σ (t)) is an n-dimensional ball with radius δ centered at σ (t),

Bδ,n (x) := {x′ ∈ X | ‖x− x′‖2 ≤ δ}.

Such a path is said to have strong δ-clearance.

2.4.1.4 Optimal solution assumption

At least one solution of the optimal path planning problem, σ∗ ∈ Σ, is assumed

to be homotopic to a path, σδ ∈ Σ, with strong δ-clearance,

∃ H : [0, 1]→ Σ, H (0) = σ∗, H (1) = σδ,

where H is a continuous map whose codomain is the set of all valid paths from the

start to the goal. Such a solution is said to have weak δ-clearance.

2.5 Discussion

Path planning is the problem of finding paths through continuous spaces that

possibly contain obstacles. It is a fundamental task that appears in many real-world

applications. Recent applications that give rise to path planning problems often

require path planning algorithms to find high-quality paths in short amounts of time.

This is difficult for various reasons, including high-dimensional search spaces,

Background 37

complicated system constraints, and expensive collision detection and cost evalua-

tion. These difficulties are often compounded and many path planning problems

that emerge from real-world applications currently cannot be solved in an exact

manner. Two approaches that can solve these problems approximately and have

complementary advantages are graph-based searches and sampling-based planners.

Graph-based searches offer a formal basis to leverage different types of informa-

tion in a principled manner. Optimization-specific information can provide estimates

of the remaining solution costs from each state in the search space. Such estimates

can be used to guide the search toward high-quality solutions, truncate the search

once a sufficiently high-quality solution is found, accelerate the search when subop-

timal solutions are acceptable, and provide a lower bound on the resolution-optimal

solution. Intent-specific information can additionally be used in graph-search algo-

rithms to align their searches with the priorities of the problems they are designed

for. For example, if fast solutions are required, then effort heuristics can be used to

guide the search towards solutions that are computationally inexpensive to find.

Graph-based searches offer compelling advantages but cannot directly be ap-

plied to path planning problems with continuous search spaces. But continuous

problems can directly be solved with sampling-based planners, and recent effort

has successfully incorporated some ideas from graph-based search into sampling-

based planning. This was achieved by viewing sampling-based approximations

as RGGs embedded in (continuous) search spaces, which conceptually separates

the approximation of the search space from the search of this approximation and

allows to study each subproblem independently.

This thesis builds on this perspective and focuses on the search of sampling-

based approximations. It leverages decades of research on graph-based search to

design sampling-based planning algorithms that outperform existing techniques

on many problems from different domains, including robotic manipulator arms

and biomedical knee replacements. The main insight this thesis builds on is that

additional, problem-specific information can greatly improve search performance.

Background 38

ABIT* leverages optimization-specific information with advanced graph-search

techniques, similar to ARA* and TLPA*. AIT* leverages optimization- and

environment-specific information with an asymmetric bidirectional search in which

both searches continuously inform each other. EIT* leverages optimization-,

environment-, and intent-specific information with a similar asymmetric bidirectional

search that is directly aligned with the priorities of the given planning problem.

Chapter 3

Advanced BIT* (ABIT*)
The extended benefits of optimization-specific information

Contents
3.1 Literature review . 42

3.2 Algorithm description . 45

3.3 Analysis . 51

3.4 Evaluation . 54

3.5 Deploying ABIT* on a next-generation rover 62

3.6 Discussion . 66

Optimization-specific information is useful in search and planning. This chapter

extends the benefits of optimization-specific information in sampling-based planning

and shows how this information can be leveraged beyond focusing a sampling-

based approximation and estimating total potential solution costs. It achieves

this by extending BIT* with advanced graph-search techniques, similar to how

ARA* and TLPA* extend A*.

BIT* is a single-query sampling-based path planning algorithm that unifies

informed graph-based searches, such as A*, with incremental sampling-based plan-

ning, such as RRT*. It samples batches of states and views these samples as a

series of increasingly dense, edge-implicit RGGs. This perspective allows BIT* to

guide its search with optimization-specific information in the form of an admissible

39

Advanced BIT* (ABIT*) 40

(a) (b) (c) (d) (e)

Figure 3.1: Five snapshots of how ABIT* searches a planning problem. ABIT* first
initializes the approximation and searches it with a highly inflated heuristic until it finds a
solution (a). It then improves this solution until it can guarantee that its cost is within a
user-specified bound of the optimal solution cost in the current approximation (b). ABIT*
then improves the approximation by sampling more states and searches the problem again
with a highly inflated heuristic to find better homotopy classes as fast as possible (c). It
then improves this solution again until it can guarantee that it is within a user-specified
bound of the resolution-optimum (d). ABIT* repeats these steps until it is stopped and
almost-surely asymptotically converges towards the optimal solution in the limit of infinite
computation time (e).

cost heuristic. BIT* leverages this information to order its search on the total

potential solution quality of a path. This results in an efficient search for the

resolution-optimal solution, but often does not return any solution until the first

resolution-optimal solution is found.

ABIT* builds on BIT* by leveraging the available optimization-specific informa-

tion more effectively using advanced graph-search techniques, such as inflation and

truncation. Inflation biases the search towards the goal, which often leads to faster

initial solution times. Truncation prevents the search from finding the resolution-

optimal solution on an approximation that will change, which balances the exploita-

tion of the approximation with the exploration of the search space (Figure 3.1).

The remainder of this chapter is organized as follows. It first presents a literature

review of single-query planners that decouple the approximation of the search space

from the search of this approximation (Section 3.1). It then presents detailed

descriptions of the approximation and search used in ABIT* (Section 3.2) and

combines established results from the literature on sampling-based planning and

graph-search algorithms to prove its almost-sure asymptotic optimality (Section 3.3).

Advanced BIT* (ABIT*) 41

The performance of ABIT* is then evaluated by comparing it to other sampling-

based planning algorithms on abstract and nonholonomic problems (Section 3.4).

ABIT* is then adapted to work on a next-generation NASA/JPL-Caltech rover

and demonstrated to work in the real world during a week-long field trial in the

Mojave Desert, California, USA (Section 3.5). The chapter concludes by discussing

the experimental results and the insights they provide (Section 3.6).

The core contributions of this chapter are:

• A review of the two popular paradigms single-query planners use to search

sampling-based approximations in a principled manner (Section 3.1).

• A detailed presentation of ABIT*, which demonstrates how to incorporate

advanced graph-search techniques in sampling-based planning to further

leverage the benefits of optimization-specific information (Section 3.2).

• A proof that combines existing results from the literature to show that ABIT*

is almost-surely asymptotically optimal (Section 3.3).

• Empirical demonstrations of the benefits of ABIT* on abstract and nonholo-

nomic problems of up to 16 dimensions (Section 3.4).

• A modification of the sampling and rewiring strategies of ABIT* to support

planning for a non-Markovian system (Section 3.5.1).

• Adaptations that enable ABIT* to work on a tethered NASA/JPL-Caltech

rover and anecdotal results form a week-long JPL-led field trial in the Mojave

Desert, California, USA (Section 3.5.2).

The works on ABIT* and its integration on a NASA/JPL-Caltech rover were

previously published in the Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA; Strub and Gammell, 2020b) and the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS; Paton et al.,

2020), respectively.

Advanced BIT* (ABIT*) 42

3.1 Literature review

This section presents a literature review of single-query sampling-based planners

that decouple approximating the search space from searching this approximation

by sampling batches of states. Two popular paradigms that build on this idea are

represented by Fast Marching Trees (FMT*; Janson and Pavone, 2013; Janson et al.,

2015), which is based on a lazy dynamic programming approach, and Batch Informed

Trees (BIT*; Gammell et al., 2015, 2020), which is based on an informed graph-search

technique. These paradigms are reviewed in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 Fast Marching Trees (FMT*)

FMT* is a sampling-based planning algorithm that samples a user-specified number

of states and views these samples as the vertices of an RGG that is embedded

in the search space. It performs a lazy programming recursion outward from the

start which searches this edge-implicit RGG with a fast-marching method (Sethian,

1996). This search is ordered on increasing cost-to-come and does not leverage

problem-specific information (similar to Dijkstra’s algorithm; Dijkstra, 1959).

This results in an asymptotically optimal algorithm either in probability (Janson

et al., 2015) or deterministically (Janson et al., 2018), depending on whether states

are sampled uniformly at random or deterministically with a low-dispersion set or

sequence. FMT* has proven bounds on its convergence and remains asymptotically

optimal (in probability) even if kinodynamic constraints are considered (Schmerling

et al., 2015a,b). But FMT* is not an anytime algorithm. It does not return a solution

until it finishes and if no (suitable) solution is found from a given set of samples, then

FMT* must be restarted from scratch with a different, often larger, set of samples.

An anytime version of FMT* is presented by Salzman and Halperin (2015),

which, upon finishing a batch, simply restarts with twice as many samples but

without reusing search effort from previous batches. Salzman and Halperin (2015)

Advanced BIT* (ABIT*) 43

also show how FMT* can improve the efficiency of its dynamic programming

recursion by leveraging optimization-specific information when selecting which

vertex to expand next. In this version, FMT* selects vertices in order of increasing

total potential solution cost, which is estimated using an admissible cost heuristic,

similar to A* (Hart et al., 1968).

Another way to improve the search efficiency of FMT* is with a bidirectional

search similar to a bidirectional Dijkstra’s algorithm (Pohl, 1969). Bidirectional

FMT* (BFMT*; Starek et al., 2014, 2015) grows two search trees, the forward

tree rooted at the start and the reverse tree rooted at the goal. The simplest

version of BFMT* alternates between extending the forward and reverse trees and

terminates as soon as the two trees meet (i.e., when the first solution is found).

A more advanced version of BFMT* always extends the tree with the lowest-cost

vertex that has not yet been expanded and continues until the same vertex has

been selected for expansion in both directions (i.e., when the resolution-optimal

solution is found). Both versions have improved solution times over FMT* but are

not anytime and do not leverage problem-specific information.

Similar to FMT* and its extensions, ABIT* separates the approximation of

the search space from the search of this approximation by sampling batches of

states. Unlike FMT* and its extensions, ABIT* is an anytime algorithm that reuses

previous search effort and extensively leverages optimization-specific information

both to focus its sampling-based approximation to the relevant region of the search

space and to order its search of this approximation in an effective manner.

3.1.2 Batch Informed Trees (BIT*)

Similar to FMT*, BIT* also samples multiple states at once and views these samples

as vertices of an RGG that is embedded in the search space. Instead of sampling a

single batch of states and viewing these samples as vertices of a single and static

Advanced BIT* (ABIT*) 44

RGG approximation of the search space, BIT* samples multiple batches of states

and views them as vertices of a series of increasingly dense RGG approximations

of the search space. This perspective allows BIT* to separate the approximation of

the search space from the search of this approximation in an anytime manner.

BIT* searches its RGG approximations similar to an edge-queue version of A* by

processing the implicit edges between nearby samples in order of their total potential

solution cost. The total potential solution quality of an edge is computed as the sum

of the cost-to-come to the source state of the edge, a heuristic estimate of the edge

cost, and a heuristic estimate of the cost-to-go from the target state of the edge.

This results in an anytime, almost-surely asymptotically optimal algorithm that

successfully leverages optimization-specific information and provides a framework

for recent approaches to kinodynamic planning (Xie et al., 2015) and optimization-

based solvers in sampling-based planning (Choudhury et al., 2016). But while BIT*

is an anytime algorithm, it does not employ anytime graph-search techniques. The

search of BIT* prioritizes efficiently finding the resolution-optimal solution on each

RGG approximation over finding initial solutions as quickly as possible. It does so

despite the fact that resolution-optimality is meaningless in the context of a single

random approximation of the search space because the resolution-optimal solution

may be arbitrarily bad in the continuous sense of the original problem and because

the resolution of the approximation is about to be increased.

Fast-BIT* (Holston et al., 2017) is an extension of BIT* that speeds up initial

solution times by first ordering its search greedily on the cost-to-go heuristic of

the target states in its edge queue. If an initial solution is found, then Fast-BIT*

orders its search on the total potential solution cost of the edges, updates its queue,

and continues its search exactly as in BIT*. Fast-BIT* first prioritizes quickly

finding an initial solution and only then optimizes this solution, but updating the

queue without reconsidering expanded vertices that were suboptimally connected

may lead to suboptimal connections that are never repaired as BIT* never adds

previously considered edges to its edge queue.

Advanced BIT* (ABIT*) 45

Similar to BIT* and its extensions, ABIT* samples multiple batches of states and

views these samples as vertices in a series of increasingly dense, edge-implicit RGGs.

Unlike BIT* and its extensions, ABIT* uses anytime graph-search techniques to

speed up initial solution times and avoids expending disproportionate computational

effort to find the resolution-optimal solution on every RGG approximation.

3.2 Algorithm description

The perspective of searching a series of increasingly dense, edge-implicit RGGs

provides a foundation for better path planning algorithms. ABIT* builds on

this perspective by using more advanced graph-search techniques. It accelerates

anytime performance without duplicating search effort, similar to anytime repairing

graph-search algorithms, and avoids wasting effort to find the resolution-optimal

solution in an approximation that will change, similar to truncated incremental

graph-search algorithms.

This accelerated performance is achieved by inflating the cost-to-go estimate in

the edge queue of ABIT*. This balances solution quality with faster initial solution

times compared to the incremental search used by BIT*. The initial (potentially

resolution-suboptimal) solution of ABIT* is subsequently repaired without duplicat-

ing search effort by tracking inconsistent states, i.e., states whose cost-to-come has

decreased since they were last expanded (similar to ARA*). Tracking these states

allows efficiently repairing the search tree by cascading the decreased cost-to-come

of these inconsistent states through the tree as necessary.

Fully exploiting every RGG approximation by finding the resolution-optimal

path is computationally expensive. ABIT* avoids this by truncating its search on a

specific RGG as soon as it can guarantee that it has found a solution whose cost

is within a factor of the resolution-optimum. This allows ABIT* to balance the

exploitation of its approximation (i.e., repairing the search) with the exploration

of the search space (i.e., increasing the resolution of the approximation).

Advanced BIT* (ABIT*) 46

3.2.1 Notation

The search space of a planning problem is denoted byX, the start state by xstart ∈ X,

and the goal states by Xgoal ⊂ X. The current search is stored as a tree, T = (V,E),

with vertices, V , and edges, E ⊂ V ×V . Vertices are associated with valid states and

edges represent valid connections between states. An edge consists of a source state,

xs, and a target state, xt, and is denoted as the pair (xs,xt). The set of inconsistent

vertices is denoted by Vinconsistent and the set of sampled states by Xsampled.

The function ĝ : X → [0,∞) represents an admissible estimate (i.e., a lower

bound) of the cost-to-come from the start to any state, x ∈ X. The function

gT : X → [0,∞) represents the cost-to-come from the start to a state, x ∈ X,

through the current search tree, T , as defined by the sum of the edge costs leading

to the state. This cost is well-defined for states with associated vertices in the tree

and taken to be infinite for any state with no associated vertex in the tree.

The function ĥ : X → [0,∞) represents an admissible estimate of the cost-to-go

from a state to a goal. The function f̂ : X → [0,∞) represents an admissible estimate

of the cost of a path from the start to a goal constrained to go through a state and is

defined as f̂ (x) := ĝ (x)+ ĥ (x) in this thesis. This estimate defines the informed set

of states that could improve the current solution, Xf̂ :=
{
x ∈ X

∣∣∣ f̂ (x) ≤ ccurrent

}
,

where ccurrent is the current solution cost (Gammell et al., 2018). The function

c : X ×X → [0,∞) denotes the true path cost between two states. The function

ĉ : X × X → [0,∞) denotes an admissible estimate of this cost.

The compounding operations, A ← A ∪ B and A ← A \ B, are respectively

abbreviated as A +←− B and A −←− B, where A and B are subsets of a common set.

The cardinality of a set is denoted by | · | and the minimum of an empty set is taken

to be infinity. The number of states per batch is denoted by m and the function

childrenT (·) returns the children of a vertex in the search tree.

Advanced BIT* (ABIT*) 47

Algorithm 1: Advanced BIT* (ABIT*)
1 V ← xstart;E ← ∅
2 Xsampled ← Xgoal ∪ {xstart}
3 Vclosed ← ∅;Vinconsistent ← ∅
4 εi ←∞; εt ←∞
5 Q ← expand (xstart)

Initialization
(Section 3.2.2)

6 repeat
7 (xs,xt)← arg min(xs,xt)∈Q

{
gT (xs) + ĉ (xs,xt) + εiĥ (xt)

}
8 Q −←− (xs,xt)

9 if εt

(
gT (xs) + ĉ (xs,xt) + ĥ (xt)

)
≤ ccurrent // Continue or truncate search?

10 if (xs,xt) ∈ E // Continue search, is edge already in tree?

11 expand_or_mark_inconsistent (xt)

12 else if gT (xs) + ĉ (xs,xt) < gT (xt) // Can possibly improve tree?

13 if collision_free (xs,xt) // Yes, is edge valid?

14 if gT (xs) + c (xs,xt) + ĥ (xt) < ccurrent

15 if gT (xs) + c (xs,xt) < gT (xt)
16 if xt ∈ V // Improves tree, is target already in tree?

17 E
−←− (parent (xt) ,xt)

18 else
19 V

+←− xt

20 E
+←− (xs,xt)

21 expand_or_mark_inconsistent (xt)
22 ccurrent ← minxgoal∈Xgoal

{gF (xgoal)}

23 else
24 Einvalid

+←− (xs,xt)

Search
(Section 3.2.3)

25 else
26 if update_approximation (εi, εt)
27 prune (Xsampled)

28 Xsampled
+←− sample (m, ccurrent)

29 Q ← expand (xstart)

30 else
31 Q +←− expand (Vinconsistent)

32 εi ← update_inflation_factor ()
33 εt ← update_truncation_factor ()
34 Vclosed ← ∅; Vinconsistent ← ∅

Approximation
(Section 3.2.4)

and

Update policies
(Section 3.2.5)

35 until stopped

Advanced BIT* (ABIT*) 48

3.2.2 Initialization

ABIT* starts by initializing the search tree with the start state as its root, the set

of sampled states with the start and goals, and the sets of closed and inconsistent

vertices as empty (Alg. 1, lines 1–3). The inflation factor, εi ≥ 1, and the truncation

factor, εt ≥ 1, are initialized to infinity (Alg. 1, line 4). ABIT* completes the

initialization by expanding all outgoing edges of the start state into the queue (Alg. 1,

line 5). This only inserts direct connections between start and goal states into

the queue, since no random states have been sampled yet and the current “RGG”

approximation therefore only consists of start and goal states.

3.2.3 Search

The search of ABIT* delays expensive computation of true edge cost by using a

lazy edge queue similar to Lazy Weighted A* (LWA*; Cohen et al., 2014). This

queue is ordered lexicographically first by the (inflated) total potential solution

cost of the edges and then by the cost-to-come of the source vertices. A search

iteration starts by removing the edge with the lowest key-value from the queue

and checking whether the search can be truncated (Alg. 1, lines 7–9). If the search

cannot be truncated and the edge is part of the search tree, then the target state is

expanded if it has not already been expanded during the current search (Alg. 1,

lines 10 and 11 and Algs. 2 and 3). ABIT* otherwise checks if the new edge can

possibly contribute to a solution better than the current one (Alg. 1, lines 12–15).

An edge that passes these checks improves the cost-to-come of the target state

and possibly the current solution. If the target state is already part of the tree,

adding this edge constitutes a rewiring (Alg. 1, line 17). Otherwise, this state is

added to the search tree (Alg. 1, line 19). The edge is added to the search tree in

both cases (Alg. 1, line 20). The target state of the edge is then expanded unless it

has already been expanded during the current search, in which case it is added to

the set of inconsistent vertices (Alg. 1, line 21 and Algs. 2 and 3).

Advanced BIT* (ABIT*) 49

Algorithm 2: ABIT*: expand_or_mark_inconsistent (x)

1 if x ∈ Vclosed

2 Vinconsistent
+←− x

3 else
4 Q +←− expand (x)

5 Vclosed
+←− x

Algorithm 3: ABIT*: expand (x)

1 Eout ← ∅
2 for all xi ∈ neighbors (x) do
3 Eout

+←− (x,xi)

4 return Eout

3.2.4 Approximation

ABIT* incrementally approximates the search space by sampling batches of m valid

states (Alg. 1, line 28). States are sampled uniformly in the informed set, using

informed sampling when possible (Gammell et al., 2018). These batches of samples

are viewed as a series of increasingly dense, edge-implicit RGGs where edges are

defined either by a connection radius, r, or by the k-nearest neighbors (Alg. 4, line 1).

The connection parameters, r and k, scale as in PRM* (Karaman and Frazzoli,

2011), using the measure of the informed set as in BIT* (Gammell et al., 2020),

r(q) := 2η

(
1 +

1

n

) 1
n

min
{
λ (X) , λ

(
Xf̂

)}
λ (B1,n)


1
n(

log (q)

q

) 1
n

k(q) := η e

(
1 +

1

n

)
log (q) ,

where q is the number of samples in the informed set, η > 1 is a tuning parameter,

λ (·) denotes the Lebesgue measure, and B1,n is an n-dimensional unit ball. ABIT*

combines this RGG definition with the existing connections in the search tree (Alg. 4,

lines 1 and 2) and ignores edges known to be invalid (Alg. 4, line 3). Improved

sampling-based approximations with deterministic sampling sequences and faster-

decreasing radii exist (Branicky et al., 2001; LaValle et al., 2004; Yershova and

Advanced BIT* (ABIT*) 50

Algorithm 4: ABIT*: neighbors (x)

1 Vneighbors ← nearest (x, r or k) // Get the nearest neighbors (Section 3.2.4)

2 Vneighbors
+←− {childrenT (x) \ Vneighbors}

3 Vneighbors
−←− {xi ∈ Vneighbors | (x,xi) ∈ Einvalid}

4 return Vneighbors

Algorithm 5: ABIT*: prune (V,E,Xsampled, ccurrent)

1 Xsampled ←
{
x ∈ Xsampled

∣∣∣ f̂ (x) ≤ ccurrent

}
2 V ←

{
x ∈ V

∣∣∣ f̂ (x) ≤ ccurrent

}
3 E ←

{
(xs,xt) ∈ E

∣∣∣ f̂ (xs) ≤ ccurrent and f̂ (xt) ≤ ccurrent

}

LaValle, 2004; Yershova et al., 2010; Janson et al., 2015, 2018; Solovey et al., 2018;

Palmieri et al., 2020; Solovey and Kleinbort, 2020) but are not used in this thesis to

isolate the reasons for the improved performance of the presented planners relative

to existing algorithms in the literature. Graph complexity is reduced by pruning

states that cannot possibly improve the current solution (Alg. 1, line 27 and Alg. 5).

3.2.5 Approximation, inflation, and truncation policies

ABIT* stops searching a specific RGG approximation once a solution is found that

is guaranteed to be no worse than the product of the inflation and truncation factors,

εiεt, times the resolution-optimum. ABIT* then updates the inflation and truncation

factors and either updates the approximation and restarts the search or continues

searching the current RGG approximation, depending on a user-specified policy

denoted as update_approximation (Alg. 1, lines 26–33). This policy may depend on

the inflation factor, εi, and truncation factor, εt, which are updated after each search

according to other user-specified policies, denoted as update_inflation_factor

and update_truncation_factor, respectively (Alg. 1, lines 32 and 33).

A high inflation factor biases the search towards the goal by prioritizing edges

with low cost-to-go estimates. Searching each improved RGG first with a high

inflation factor often speeds up initial solution times and, once a solution is found, can

Advanced BIT* (ABIT*) 51

accelerate the discovery of better solutions in new homotopy classes that are unlocked

by improved RGG approximations. But searching with a high inflation factor also

results in a loose suboptimality bound and often leads to highly suboptimal solutions.

A low inflation factor instead results in a tight suboptimality bound and often leads

to higher-quality solutions but results in a more conservative search with slower

initial solution times. ABIT* was found to work best when each RGG approximation

is first searched with a high inflation factor and then with a low inflation factor.

A high truncation factor stops the search as soon as a loose bound on the

suboptimality of the current solution is guaranteed, which leads to faster improve-

ments of the RGG approximation. This promotes the exploration of the search

space with new samples. A low truncation factor instead allows the search to

continue until a tight bound on the suboptimality of the current solution is guaran-

teed, which often leads to better solutions. This promotes the exploitation of the

current RGG approximation with a more complete search. ABIT* can therefore

balance the exploration of the search space with the exploitation of its current RGG

approximation with the truncation factor update-policy.

Keeping these policies flexible allows ABIT* to be tuned to specific problems. Sec-

tion 3.4 presents the policies used for the experimental results presented in this thesis.

3.3 Analysis

Any path planning algorithm that processes a sampling-based approximation with a

graph-search algorithm is almost-surely asymptotically optimal if the approximation

almost-surely contains an asymptotically optimal solution and the graph-search

algorithm is resolution-optimal. This condition is sufficient but not necessary. The

almost-sure asymptotic optimality of ABIT* follows from proven properties of its

approximation and search algorithms.

Advanced BIT* (ABIT*) 52

3.3.1 Approximation

The approximation constructed by ABIT* almost-surely contains an asymptotically

optimal solution because it contains all the edges in PRM* for any set of samples

and PRM* is almost-surely asymptotically optimal (Karaman and Frazzoli, 2011).

3.3.2 Search

ATD* finds a solution no worse than the product of the inflation and truncation

factors, εiεt, times the resolution-optimum (Aine and Likhachev, 2016). The search

of ABIT* processes at least all of the edges processed by ATD* (Theorem 1) and

updates the cost-to-come of any vertex under the same condition as ATD*. ABIT*

therefore asymptotically finds a resolution-optimal solution when the product

of the inflation and truncation factors, εiεt, approaches one as the number of

samples goes to infinity,

lim
q→∞

εiεt = 1.

Theorem 1. The search of ABIT* processes at least all of the edges that would be

processed by ATD* for a given RGG approximation.

Proof. ATD* can handle improved and worsened connections between states, but

adding states and edges to a graph can only improve connections. Therefore only

states with improved cost-to-come are considered in this proof (these states are

called overconsistent by Aine and Likhachev, 2016). The vertex queue of ATD* is

first converted to an edge queue and it is then shown that ATD* finishes sooner

than the search in ABIT* due to a stricter termination condition. The search of

ABIT* therefore processes at least all of the edges that would be processed by ATD*

for a given RGG approximation, since both searches add elements to their queues

under the same condition, namely when the cost-to-come of a state is improved.

Advanced BIT* (ABIT*) 53

Ordering ATD* computes a sort key for every state, x, in its queue as the sum

of its cost-to-come and the inflated heuristic estimate of its cost-to-go,

keyATD∗

V (x) := gp [x] + εiĥ (x) ,

where gp [x] is the cost-to-come label. This label is recursively calculated as the

minimum sum of the cost-to-come to a neighbor and the edge cost between the

state and that neighbor,

gp [x] := min
xs∈Xn(x)

{gp [xs] + c (xs,x)} ,

where Xn(x) denotes the neighbors of the state, x. The base case is a cost-to-come

label of zero for the start state, gp [xstart] = 0. ATD* processes vertices in its queue

in order of increasing key-values, keyATD∗

V . If a better connection to a state in the

queue is found, then the key and queue position of that state are updated.

Instead of updating the key and queue position, the vertex queue of ATD* could

alternatively contain an instance of the same state for each parent and key-value.

Selecting the minimum from the whole queue would ensure that the best discovered

connection for each state is considered before alternative connections. This would

be equivalent to an edge-queue version of ATD* sorted in order of increasing edge

key-values,

keyATD∗

E (xi,xj) := gp [xi] + c (xi,xj) + εiĥ (xj) .

Truncation If the truncation factor times the smallest vertex key-value, keyATD∗

V ,

of any vertex in the vertex queue of ATD* is greater than or equal to the cost-to-

come label of the goal or the current solution cost, then ATD* terminates (Aine and

Likhachev, 2016). This is equivalent to terminating when the smallest key-value,

keyATD∗

E , in its edge queue would be greater than or equal to the cost-to-come label

Advanced BIT* (ABIT*) 54

of the goal or the current solution cost,

εt min
(xi,xj)∈QATD∗

E

{
gp [xi] + c (xi,xj) + εiĥ (xj)

}
≥ min{gp [xgoal] , gT (xgoal)}, (3.1)

again because the minimum is taken over all edges in the queue. The search of

ABIT* terminates if the truncation factor, εt times the smallest total potential

solution cost of the best element in its queue is greater than or equal to the current

solution cost,

εt min
(xi,xj)∈QABIT∗

{
gT (xi) + ĉ (xi,xj) + ĥ (xj)

}
≥ gT (xgoal) . (3.2)

This condition cannot be satisfied sooner than that of ATD*, as the inflation factor,

εi, in Equation 3.1 is greater than or equal to one, the heuristic, ĉ, in Equation 3.2

is admissible, and rewirings can only improve the current cost-to-come, gT , which is

therefore smaller than or equal to the cost-to-come label, ∀ x ∈ X, gT (x) ≤ gp[x].

ABIT* therefore considers at least all edges that ATD* would consider.

3.4 Evaluation

The performance of sampling-based planning algorithms depends on the specific

states they happen to sample. They cannot be meaningfully evaluated by comparing

a single run of each planner because sampling is often random and some sample

configurations are better than others. This thesis therefore presents planner per-

formance as statistical results, where each planner attempts to solve each problem

100 times. These results are shown in two plots per problem.

The first plot shows the planner success rates over time, i.e., the ratio of successful

attempts after a given duration of planning. The second plot shows the median

solution cost over time and the median initial solution costs and times, where

unsuccessful attempts were taken as infinite cost. This plot includes nonparametric

Advanced BIT* (ABIT*) 55

0

25

50

75

100

S
u
cc

es
s

[%
]

Performance plots

10−2 10−1

1.5

2

2.5

3

Computation time [s]

C
os

t1.5

2

2.5

3

C
os

t

0

25

50

75

100

S
u
cc

es
s

[%
]

Attempt statistics

0

1

2

#
S
ol

u
ti

on
s

10−2 10−1

1.5

2

2.5

3

Computation time [s]

C
os

t

10−2 10−1

1.5

2

2.5

3

Computation time [s]

C
os

t

Individual attempts

Figure 3.2: An illustration of how the performance plots are generated. Planners are
evaluated in this thesis by letting each planner (attempt to) solve each problem multiple
times. The solution cost over time is recorded for each attempt and different statistics are
computed from this data. These statistics are then summarized in two performance plots.
The left column shows five attempts of a planner. The middle column shows the empirical
CDF and PDF of the initial solution times (top), a scatter plot of the initial solution times
and costs and their median values with nonparametric confidence intervals (middle), and
the median solution cost over time, also with a nonparametric confidence interval (bottom).
The right column shows the performance plots that summarize these statistics with the
empirical CDF of the initial solution times (top) and the median initial solution time and
cost as well as the median solution cost over time with confidence intervals (bottom). This
illustration only shows five attempts of a single planner and 62.5% confidence intervals for
clarity. All other performance plots in this thesis summarize 100 attempts per planner
and include 99% confidence intervals.

99% confidence intervals for the median costs over time and the initial solution

costs and times (Figure 3.2).

ABIT* was evaluated in this manner against the OMPL implementations of

RRT-Connect, Informed RRT*, FMT*, Lazy PRM*, and BIT* on abstract prob-

lems (Section 3.4.1) and on Reeds-Shepp car problems (Section 3.4.2)1. Asymptoti-

cally optimal planners optimized path length in search space and informed planners

used the Euclidean distance in search space as the admissible cost heuristic.

RRT-based planners used a maximum edge length of 0.3, 0.4, 1.25, 2.4, and

3.0 in 2, 3, 8, 14, and 16 dimensions, respectively. FMT* is not an anytime
1The presented results were obtained with OMPL v1.5.0 on two dedicated cores of an Intel

i7-4910MQ (2.9 GHz) processor in a laptop with 16 GB of RAM running Ubuntu 18.04.

Advanced BIT* (ABIT*) 56

(0.2, 0.5)
xstart

(0.8, 0.5)

xgoal

0.
58

0.
04

0.
2

0.20.4

(a)

xstart

xgoal

(b)

Figure 3.3: Illustrations of the wall gap problem in R2 (a; Section 3.4.1) and an example
of a Reeds-Shepp car problem (b; Section 3.4.2). The start and goal states are represented
by a black dot () and circle (), respectively, or by a cartoon car (). Search-space
obstacles are indicated with gray rectangles (). Each Euclidean search space dimension
was bounded to the interval (0, 1). The results of the tested planners on the wall gap
problems in R2, R8, and R16 are shown in Figures 3.4a, 3.4b, and 3.4c, and those for the
best and worst relative performances of ABIT* on instances of the Reeds-Shepp problem
in Figures 3.5a and 3.5b, respectively.

algorithm and requires the user to specify the number of samples in advance. All

experiments presented in this thesis tested configurations of FMT* with 10, 50, 100,

500, 1000, and 5000 samples. There are multiple lines for FMT* in the presented

plots because success rates and median solution times and costs were computed

separately for each configuration.

BIT* and ABIT* sampled 100 states per batch and used the k-nearest RGG

connection strategy with a factor of η = 1.001 regardless of the problem dimension.

ABIT* used inflation and truncation factor update policies that search each RGG

approximation twice, first with a high inflation factor, εi = 106, and then with a lower

factor that depends on the number of states in the informed set, εi = 1 + 10/q. This

ensures that new homotopy classes are found quickly with the first search on each

improved RGG approximation and guarantees asymptotic optimality (Section 3.3).

Advanced BIT* (ABIT*) 57

The truncation factor was set to εt = 1 + 5/q for all searches. ABIT* was not found

to be sensitive to the exact form of these policies and achieved comparable results

with other tested policies that searched the first batch of samples with a highly

inflated heuristic and gradually let the inflation and truncation factors approach

one as the number of samples approaches infinity. These policies could be tuned

to each problem separately, but were kept constant in this thesis to show that

ABIT* can perform well without tuning them.

3.4.1 Abstract problems

Search-space obstacles have complex geometries even for relatively simple prob-

lems (e.g., Figure 1; Das and Yip, 2020). This often makes it difficult to reason

about the performance of a planner on a given problem. Directly designing abstract

search-space obstacles from basic geometries can help develop intuition on the

performance of a planner for a given obstacle configuration and helps the algorithm

design process, but the basic geometries of these abstract obstacles make collision

detection computationally much less expensive than in real-world problems.

Another factor that affects the computational cost of collision detection is the

resolution at which edges are checked for collision. This resolution determines the

false negative collision rate, i.e., the percentage of edges that are believed to be

valid by the planner but in reality are not. What is considered an acceptable false

negative collision rate is application-specific. To make the abstract problems in this

thesis representative of real-world applications, the collision detection resolution that

results in a 1% false negative collision rate on robotic manipulator arm problems

was determined and the collision detection resolution on the abstract problems was

set such the average time to evaluate a valid edge is equal in both settings (which

on the tested hardware required a resolution of 5 · 10−6 for abstract problems).

Advanced BIT* (ABIT*) 58

0
25
50
75
100

Su
cc

es
s

[%
]

10−2 10−1 100
0.5

1

1.5

Computation time [s]

C
os

t

(a) Abstract problem in R2

0
25
50
75
100

Su
cc

es
s

[%
]

10−2 10−1 100
1

2

3

4

Computation time [s]

C
os

t

(b) Abstract problem in R8

0
25
50
75
100

Su
cc

es
s

[%
]

10−2 10−1 100 101
2

4

6

Computation time [s]

C
os

t

(c) Abstract problem in R16

RRT-Connect Informed RRT* FMT* Lazy PRM* BIT* ABIT*

Figure 3.4: The planner performances on the wall gap experiments in R2, R8, and R16

described in Section 3.4.1. The results show that ABIT* outperforms the other tested
planners on these problems. In terms of success rates, ABIT* is as good as the most
reliable tested planner (Lazy PRM*). In terms of initial solutions, ABIT* finds them as
fast as the fastest other planners (Lazy PRM*) but with better solution quality. In terms
of convergence rates, ABIT* finds the optimal homotopy class as fast as the fastest other
tested planner (BIT*).

Advanced BIT* (ABIT*) 59

The abstract obstacle configuration on which the planners were tested consists

of a wall with a narrow gap between the start and goal states (Figure 3.3a). This

obstacle configuration illustrates how fast planners are able to find a hard-to-find

optimal homotopy class. The wall gap obstacle configuration was tested in 2, 8, and

16 dimensions with respective time limits of 1, 5, and 30 seconds per attempt.

Figure 3.4 shows the performances of all algorithms on the R2, R8, and R16

versions of this problem. They show that ABIT* outperforms the other tested

algorithms on these problems by finding high-quality initial solutions faster while

still converging to the optimal solution with a competitive convergence rate.

3.4.2 Reeds-Shepp car problems

ABIT* was also tested against the other planners when planning for a Reeds-Shepp

car (Reeds and Shepp, 1990) in an environment with 50 random obstacles (Fig-

ure 3.3b). This problem shows the performance of informed planning with inflation

and truncation in the presence of nonholonomic constraints. The Euclidean dimen-

sions of the search space were normalized to have a side length of one. The obstacles

were placed uniformly at random and had a rectangular shape with uniformly

distributed side lengths between 0.1 and 0.2. The car had a rectangular shape with

normalized width and length of 0.01 and 0.02, respectively. Collisions between the

rectangular car model and the rectangular obstacles were detected at a resolution of

0.001 (i.e., a tenth of the car width) with an optimized implementation of the two-

dimensional Separating Axis Theorem (SAT; Gottschalk et al., 1996; Huynh, 2008).

Random obstacle configurations have different effects on the absolute performance

of each planner, i.e., the individually achieved solution times and costs. The obstacle

configuration consequently also affects the relative performances of the tested plan-

ners, i.e., the ranking of all planners. Multiple obstacle configurations must therefore

be tested for a comprehensive planner evaluation on problems with random obstacles.

Advanced BIT* (ABIT*) 60

RRT-Connect Informed RRT* FMT* Lazy PRM* BIT* ABIT*

198 (99%) 179 (89.5%) 186 (93%) 180 (90%) 188 (94%) 186 (93%)

Table 3.1: The numbers (and percentages) of the 200 Reeds-Shepp car problem instances
on which the tested planners achieved a success rate of at least 50%. ABIT* is tied for
the second most reliable asymptotically optimal planner. The only tested planner that
solved significantly more instances is RRT-Connect, which is not an anytime algorithm.

The planners were tested on 200 solvable Reeds-Shepp problem instances with

the same start and goal states but different, random obstacle configurations. The

time limit for these problems was 1 second per attempt. Testing 200 problems leads

to comprehensive results, but complicates the evaluation of planner performance

on the whole set of problems. Computing the success rates and median solution

times and costs across all problem instances conflates the absolute and relative

performance of a planner, which depend on individual problem instances. Selecting a

representative problem instance is difficult, because the relative planner performance

varies too much across this set of problems. This thesis instead shows isolated results

for the instances with the best and worst performances of each presented planner.

The performances of ABIT* are ranked in terms of its median initial solution

time relative to the fastest median initial solution time of the other tested planners,

limited to problem instances where ABIT* had at least 50% success rate (Table 3.1).

These results show that no planner outperforms all other tested planners on

all instances of the Reeds-Shepp problem. On the problem instance where ABIT*

performs best relative to the other tested planners, ABIT* has the fastest median

initial solution time and competitive success and convergence rates (Figure 3.5a). On

the problem instance where ABIT* performs worst relative to the other test planners,

many of the asymptotically optimal planners perform similarly to ABIT* and only

RRT-Connect has a significantly faster median initial solution time (Figure 3.5b).

Advanced BIT* (ABIT*) 61

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100

1

1.5

Computation time [s]

C
os

t

(a) Best relative performance of ABIT*

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100
1

2

3

4

Computation time [s]

C
os

t

(b) Worst relative performance of ABIT*

RRT-Connect Informed RRT* FMT* Lazy PRM* BIT* ABIT*

Figure 3.5: The planner performances on the Reeds-Shepp car problem that resulted
in the best (a) and worst (b) performances of ABIT* relative to the other tested plan-
ners (Section 3.4.2). The results show that ABIT* outperforms all other tested planners
on some instances (a) but is outperformed by some of the same planners on others (b). On
the best instance for ABIT*, it outperforms the other tested planners by finding initial
solutions faster while having competitive convergence and success rates (a). On the worst
instance for ABIT*, it is only outperformed by RRT-Connect, which finds initial solutions
significantly faster (b). But RRT-Connect is not an anytime planner and does not improve
its solution given more computation time.

Advanced BIT* (ABIT*) 62

(a) (b) (c)

Figure 3.6: NASA/JPL-Caltech’s Axel rover system. Axel is a mechanically simple and
robust system consisting of two wheels, a cylindrical body, and an integrated tether that
is controlled by an actuated boom (a, b). Axel can take in-situ measurements of the soil
with a sensor load that is enclosed in its wheel base (c). Photos courtesy of NASA/JPL.

3.5 Deploying ABIT* on a next-generation rover

ABIT* was deployed and demonstrated to work on NASA/JPL-Caltech’s Axel

rover system. Axel is a tethered rover designed to access science targets on steep

slopes and other difficult terrain on the Moon and Mars (Figure 3.6; Nesnas et al.,

2012). This section first summarizes the adaptations required for ABIT* to work

on Axel (Section 3.5.1) and then presents empirical evidence from simulations and

from a week-long field trial that shows that ABIT* can successfully plan paths

for Axel with these adaptations (Section 3.5.2).

3.5.1 Adapting ABIT* to plan for Axel

Planning for Axel is challenging due to the complex interactions of its tether with

the targeted terrain. Axel requires sequences of SE(3) states on the surface manifold

of the terrain. The validity of each state is evaluated by checking it for collision and

analyzing its static stability. Collisions are detected by projecting each sampled

state onto the surface manifold such that the wheels are in contact and then

checking whether the body intersects with the terrain. Static stability is analyzed

by considering gravity, the tether force, and the ground reaction forces of the wheels

and the boom. Computing the tether force requires predicting where the tether

anchors to the terrain. The full details of the state projection, stability analysis,

and anchor prediction are presented by Paton et al. (2020).

Advanced BIT* (ABIT*) 63

ABIT* is agnostic to the system it plans for, but assumes that the sampled

states are Markovian in the sense that their validity does not depend on how the

states are reached. The states of Axel are non-Markovian because the same state

may be stable or unstable because its stability depends on the tether force, which in

turn depends on its anchor history. The anchor history encodes all points where the

tether anchors to the environment and is determined by how a state was reached.

Rewiring a state to a parent with an incompatible anchor history can make it

unstable and is prevented in this adaptation of ABIT*. New samples initially have

an undetermined anchor history to ensure that they can be connected to the search

tree. The anchor histories of these samples are evaluated when the first connection is

considered, using the anchor prediction algorithm described by Paton et al. (2020).

These modifications ensure that no previously valid state is invalidated by

rewiring and allow new samples to be connected to the existing search tree, but may

prevent ABIT* from finding paths through regions where states have lowest-cost

connections with anchor histories that do not support further progress.

Planning though such regions is made possible by predetermining the anchor

history of a user-specified percentage of new samples (the validation tests used values

around 5%). The predetermined anchor history is copied form a neighboring sample,

where the neighborhood is defined by user-specified radius (the validation tests

used radii similar to the RGG connection radius described in Section 3.2.4). This

maintains the exploration of the whole search space with all known anchor histories

and allows ABIT* to plan paths with different anchor histories through regions where

the lowest-cost paths have anchor histories that prevent further progress (Figure 3.7).

If ABIT* improves its solution, then a new goal state with undetermined

anchor history is created to ensure that there is always a goal state the next

improved solution can connect to. These adaptations allow ABIT* to plan paths

for Axel (and potentially other tethered systems) in complex terrains such as

on steep Martian slopes.

Advanced BIT* (ABIT*) 64

xstart

Xgoal

(a) (b) (c)

(d)

r

(e) (f)

Figure 3.7: An illustration of an Axel planning problem that requires consideration
of its non-Markovian tether constraints. The anchor history of each state is indicated
in color. Axel must move from the start down to the goal, but the anchor history of
the start does not support a direct descent. An obstacle induces two homotopy classes,
indicated in red () and green (; a). Paths in the red homotopy class are invalid
due to the unstable anchor history of the start (b). Paths in the green homotopy class
are valid as they anchor the tether at the obstacle before descending (c). If all new
samples had undetermined anchor histories, then all lowest-cost paths to states in the
blue area () would connect to the start by going in front of the obstacle (red homotopy
class), precluding the necessary connections to these states from behind the obstacle (green
homotopy class) due to incompatible anchor histories (d). To prevent this, ABIT* samples
some states with predetermined anchor histories by copying the anchor history of a sample
within a user-specified radius (e). This inhibits connections to these states from neighbors
with incompatible anchor histories and ensures that the blue region is explored by paths
with anchor histories that correspond to the green homotopy class (f).

3.5.2 Verifying the adaptations of ABIT*

The non-Markovian adaptations of ABIT* were validated with three tests on

simulated maps (Paton et al., 2020). The maps consisted of a 10 × 5 × 4 meter

ledge with a 55 degree slope on flat ground (Figure 3.8) and were generated with

Voxblox (Oleynikova et al., 2017). The first map tests that ABIT* can find paths

when the anchor history of the start state supports a direct descent down the

sloped face of the ledge. The second map tests that ABIT* cannot erroneously

find paths when the anchor history of the start state does not support a direct

Advanced BIT* (ABIT*) 65

Stable initial anchor Unstable initial anchor Unstable initial anchor
but obstacle to anchor on

xstartanchor

xgoal

(a)

xstart anchor

xgoal

(b)

xstart anchor

xgoal

(c)

(d) (e) (f)

Figure 3.8: Experimental results (Paton et al., 2020) for variations of the problem in
Figure 3.7 with a stable initial anchor and no obstacle (a, d), an unstable initial anchor
and no obstacle (b, e), and an unstable initial anchor but an obstacle to anchor on (c,
f). Statically stable areas are indicated in green (), unstable areas in red (), and
conditionally stable areas in yellow (; a, b, c). If the initial anchor allows for a direct
descent (a), then ABIT* found direct solutions 100 out of 100 times (d). If the initial anchor
does not allow for a direct descent and there is no obstacle to anchor on (b), then ABIT*
did not find any erroneous solutions in 100 tries (e). If the initial anchor does not allow for
a direct descent but there is an obstacle to anchor on, which allows for stable intermediate
anchors (c), then ABIT* found solutions 84 out of 100 times in the first 750 iterations (f).

descent down the sloped face of the ledge. The third map tests that ABIT* can

find paths when the anchor history of the start state does not support a direct

descent but there is an obstacle that allows for intermediate anchors that support

a descent down the sloped face of the ledge (Figure 3.8).

ABIT* had a 100% success rate when the anchor history of the start state

supported a direct descent and found no erroneous solutions when the start state

did not support a direct descent and there was no obstacle to anchor to. When

the start state did not support a direct descent but there was an obstacle that

allows for intermediate anchors that support a descent down the slope, then ABIT*

had a success rate of 84% in the first 750 iterations.

Advanced BIT* (ABIT*) 66

1m

(a) (b)

Figure 3.9: An example trajectory from the week-long field trial of Axel in the Mojave
Desert, California, USA. The map data is colored by elevation (high is purple, low is
red). Axel drove 44 meters of the 46 meter traverse autonomously (i.e., 95% autonomy by
distance), which is indicated in white on the maps (Paton et al., 2020). This field trial
did not include tether stability checks, but demonstrated successful operation of Axel and
ABIT* on noisy data collected from an onboard stereo camera.

An early version of the whole system that did not include anchor predictions

was tested during a week-long field test at a Martian analogue site at the Golden

Queen Mine in the Mojave Desert, California, USA. During the autonomy test,

Axel was able to drive 44 meters of a 46 meter traverse autonomously (which is

95% autonomy by distance). This field test demonstrated the ability of ABIT*

to robustly plan paths for Axel on real-world maps that were generated with the

onboard stereo camera (Figure 3.9).

3.6 Discussion

ABIT* leverages optimization-specific information in the form of an admissible cost

heuristic to improve the performance of sampling-based algorithms. It approximates

the search space of a planning problem by sampling multiple batches of states,

which it views as a series of increasingly dense, edge-implicit RGGs, as in BIT*.

In contrast to BIT*, it uses advanced graph-search techniques, such as inflation

and truncation, to speed up initial solution times and to avoid spending excessive

computational effort to exploit an approximation that will change.

Advanced BIT* (ABIT*) 67

ABIT* relies on an admissible cost heuristic for edge-costs and remaining

solution-cost estimates. If no informative admissible heuristic is available, then

ABIT* can be run with the trivial heuristic, i.e., ∀ xi,xj ∈ X, ĥ (xi) ≡ ĉ (xi,xj) ≡ 0.

This turns the search of ABIT* into an edge-queue version of Dijkstra’s algorithm.

If an admissible cost heuristic is available and ABIT* is run with unit inflation

and truncation factors, then it can be viewed as a simplified but equally effective ver-

sion of BIT* that cascades rewirings. ABIT* merges the dual vertex and edge queues

of BIT* into a single edge queue. It avoids repeated collision checks by caching

checked edges in an object-oriented manner instead of discerning between new and

old states as in BIT*. This clarifies the conceptual ideas behind these algorithms

and simplifies their implementation without impeding their practical performance.

If ABIT* is run with inflation and truncation factors greater than one, then

ABIT* can improve on the performance of BIT* (Section 3.4). Inflating the heuristic

biases the search towards the goal and can find initial solutions quickly. Truncating

the search once a sufficient bound on the current solution quality is achieved avoids

spending an excessive amount of computational effort to fully exploit an approxima-

tion that will change. Flexible update policies of the inflation and truncation factors

ensure that ABIT* can leverage high and low inflation and truncation depending on

the accuracy of its approximation. ABIT* was not found to be sensitive to the exact

form of these policies. All examined policies that conduct the initial search of each

approximation with a very high inflation factor and asymptotically let both factors

approach one as the number of states goes to infinity lead to results comparable

to those presented in Section 3.4 and in Strub and Gammell (2020b).

ATD* and ABIT* both use ideas from ARA* and TLPA* but in different ways

because they are designed for different problems. ATD* is designed to search

dynamic but discrete problems represented by graphs which change because of

updates to the problem, e.g., because of new information about the environment of

a robot. It cannot control when it receives these updates and must handle vertices

Advanced BIT* (ABIT*) 68

with both decreased and increased cost-to-come. ABIT* is instead designed to

directly search static but continuous problems represented by a series of increasingly

dense RGGs. ABIT* controls when it improves its sampling-based approximation

and only has to handle vertices with decreased cost-to-come because adding more

vertices and edges to its approximation cannot worsen the path to any state.

ABIT* was also adapted to a non-Markovian system by changing its sampling

and rewiring strategies. These adaptations were demonstrated in collaboration with

NASA/JPL-Caltech to work on Axel, a tethered rover specialized for navigating steep

slopes, during a week-long field test in the Mojave Desert, California, USA (Paton

et al., 2020). Independently of this collaboration, ABIT* also successfully planned

paths for RoboSimian, another next-generation NASA/JPL-Caltech rover, through

salt-evaporite fields in the Death Valley, California, USA (Reid et al., 2020). ABIT*

was separately extended to consider search momentum by prioritizing the expansion

of vertices that have recently resulted in search progress (Chen et al., 2021).

In summary, this chapter presented the following core contributions:

• A review of other sampling-based algorithms that decouple their approximation

from their search by sampling batches of states (Section 3.1).

• A detailed description of ABIT*, which incorporates advanced graph-search

techniques in sampling-based planning to leverage optimization-specific infor-

mation more efficiently than BIT* (Section 3.2).

• A proof of the almost-sure asymptotic optimality of ABIT* that combines

established results from the literature (Section 3.3).

• Empirical demonstrations of the benefits of ABIT* on a set of abstract and

nonholonomic problems (Section 3.4).

• Adaptations of the sampling and rewiring strategies in ABIT* to work with

NASA/JPL-Caltech’s Axel rover system and anecdotal verification of these

adaptations (Section 3.5).

Chapter 4

Adaptively Informed Trees (AIT*)
The benefits of environment-specific information

Contents
4.1 Literature review . 72

4.2 Algorithm description . 75

4.3 Analysis . 85

4.4 Evaluation . 90

4.5 Discussion . 97

Path planning problems are in part defined by the obstacles in their environ-

ment (Definitions 1 and 2; Chapter 2). They must therefore distinguish between

valid and invalid states of their search spaces, i.e., states that are collision-free and

states that are not. This partitions the search space into two collectively exhaustive

but mutually exclusive sets of states (i.e., all states of the search space are either

valid or invalid). These sets are impossible or prohibitively complex to express

analytically for many path planning problems, but determining algorithmically

whether a single state is valid or invalid is often computationally feasible.

This property is exploited by sampling-based planning algorithms. Instead of

computing complex obstacle representations, they simply sample individual states,

check whether these states are valid, and try to find valid connections between them

if they are. In this manner, sampling-based planning algorithms gain incremental

69

Adaptively Informed Trees (AIT*) 70

(a) (b) (c) (d) (e)

Figure 4.1: Five snapshots of how AIT* searches a continuous planning problem. AIT*
starts by initializing the approximation and calculating an approximation-specific cost
heuristic with a reverse search without collision detection (a). AIT* exploits the calculated
heuristic with its forward search and repairs the reverse search tree whenever the forward
search reveals that it contains an invalid edge (b). When the forward search finds the
resolution-optimal solution, the approximation is improved by sampling and pruning states
and the heuristic is updated on the improved approximation (c). This updated heuristic
is again exploited with the next forward search and repaired when found to use invalid
edges (d). AIT* repeats these steps until it is stopped and almost-surely asymptotically
converges towards the optimal solution in the limit of infinite computation time (e).

information about the search-space obstacles (i.e., the sets of valid and invalid

states) every time they check a state for collision. While this environment-specific

information is used by all sampling-based planning algorithms when approximating

the search space, it is ignored by most planners when searching their approximation.

This chapter presents AIT*, a sampling-based path planning algorithm that lever-

ages optimization- and environment-specific information both when approximating

the search space and when searching this approximation. It leverages this additional

information when ordering its search without making any assumptions about the

location, shape, or number of obstacles and without requiring additional user input.

AIT* achieves this by leveraging optimization- and environment-specific infor-

mation with a search that is bidirectional, hierarchical, and asymmetric. This search

is bidirectional as AIT* builds two search trees, one rooted at the start and one

at the goal. This bidirectional search is hierarchical as the reverse search can be

seen as working in an abstract search space because it does not perform collision

detection on the edges. This hierarchical bidirectional search is asymmetric because

the reverse and forward searches have different purposes and computational cost.

Adaptively Informed Trees (AIT*) 71

The inexpensive reverse search calculates an accurate cost heuristic by combining

heuristic edge costs while considering the connectivity of the current approximation.

The expensive forward search leverages this heuristic and informs the reverse search

about invalid edges (Figure 4.1). For brevity, this type of search is sometimes

simply called an asymmetric bidirectional search in this thesis (in the graph-search

literature it would be called a hierarchical search).

The remainder of this chapter is organized as follows. It first presents a literature

review of other sampling-based planning algorithms that leverage environment-

specific information to guide their search (Section 4.1). It then presents a detailed

description of AIT* (Section 4.2) and combines established results from the litera-

ture on sampling-based planning and graph-based search to prove its almost-sure

asymptotic optimality (Section 4.3). The performance of AIT* is then evaluated

by comparing it to other sampling-based planning algorithms on nonholonomic,

manipulator, and biomedical problems (Section 4.4). The chapter concludes by

discussing these results and potential improvements for AIT* (Section 4.5).

The core contributions of this chapter are:

• A review of other sampling-based algorithms that leverage environment-

specific information to guide their search and a discussion of their conceptual

differences to AIT* (Section 4.1).

• A detailed presentation of AIT*, which demonstrates how optimization- and

environment-specific information can be leveraged in all aspects of sampling-

based planning, including the search (Section 4.2).

• A proof that combines established results from the literature on sampling-

based planning and graph-based search to show that AIT* is almost-surely

asymptotically optimal (Section 4.3).

• Empirical demonstrations of the benefits of AIT* on Reeds-Shepp problems, a

manipulator problem, and a problem from the biomedical domain (Section 4.4).

Adaptively Informed Trees (AIT*) 72

The work on AIT* was previously published in the Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA; Strub and Gammell,

2020a) and has been accepted for publication in the International Journal of

Robotics Research (IJRR; Strub and Gammell, 2021b).

4.1 Literature review

All sampling-based planning algorithms use environment-specific information in the

form of collision detection results to build a discrete approximation of the continuous

search space. This section reviews the few sampling-based planning algorithms that

also leverage such information when searching their sampling-based approximations.

Motion Planning using Lower Bounds (MPLB; Salzman and Halperin, 2015) is most

closely related to AIT* as both planners leverage environment-specific information

by computing accurate cost heuristics from the connectivity of their sampling-based

approximations. MPLB is reviewed in detail in Section 4.1.1. Other sampling-based

planners leverage environment-specific information less directly when searching

by tightly coupling the search with the sampling and using environment-specific

information to bias the sampling. These planners are reviewed in Section 4.1.2.

The forward search in AIT* often fully evaluates fewer edges than that of

planners that directly use an a priori heuristic, because combining an a priori

heuristic along the edges of a path as in the reverse search of AIT* results in a

heuristic that dominates (i.e., is greater than or equal to) the a priori heuristic if this

heuristic is consistent. Fully evaluating few edges is not the explicit goal of AIT* but

it connects AIT* to lazy graph-search algorithms that explicitly aim to minimize the

number of fully evaluated edges (e.g., Cohen et al., 2014; Dellin and Srinivasa, 2016;

Mandalika et al., 2019; Lim et al., 2021). These methods can significantly improve

search performance but a detailed review of them exceeds the scope of this thesis.

Adaptively Informed Trees (AIT*) 73

4.1.1 Motion Planning using Lower Bounds (MPLB)

MPLB is a sampling-based planning algorithm that builds on the quasi-anytime

version of FMT* reviewed in Section 3.1.1. It starts by sampling a batch of states,

which it views as an edge-implicit RGG. MPLB then determines all promising

samples in its current batch (i.e., samples that could potentially improve its current

solution). It does so by running two instances of Dijkstra’s algorithm, one from

the start and one from the goal, until they have respectively found all states with

a cost-to-come or cost-to-go of less than or equal to half the current solution cost.

MPLB then runs another instance of Dijkstra’s algorithm from the goal, which

calculates the cost-to-go of all promising samples up to the current solution cost.

These three searches with Dijkstra’s algorithm are computationally inexpensive

because they do not perform collision detection on the edges.

The promising samples are then searched with the informed version of FMT*

reviewed in Section 3.1.1 using the calculated, approximation-specific cost-to-go

values as an accurate and admissible cost heuristic. Once this FMT* search finishes,

MPLB restarts this process by replacing its approximation with twice as many new

samples. This results in an almost-surely asymptotically optimal algorithm that

leverages environment-specific information in its search, but cannot reuse previous

search effort when searching improved RGG approximations, and does not update

the accuracy of its heuristic given new collision detection results.

Similar to MPLB, AIT* leverages environment-specific information by calculat-

ing an accurate, approximation-specific cost heuristic with a reverse search that does

not check edges for collision. Unlike MPLB, AIT* uses heuristic estimates of edge

costs in the reverse search, reuses previous search effort when searching improved

RGG approximations, and updates its calculated heuristic when the forward search

detects that its calculation used invalid edges.

Adaptively Informed Trees (AIT*) 74

4.1.2 Indirectly leveraging environment-specific information

Environment-specific information can also be leveraged indirectly when searching

sampling-based approximations by tightly coupling the search with the sampling

and using environment-specific information to bias the sampling.

Kiesel et al. (2012) present a technique called f -biasing, which uses environment-

specific information to bias the sampling of RRT-based algorithms. Their technique

first discretizes the search space of the planning problem (e.g., with a uniform

grid) and then calculates the cost-to-come and cost-to-go of each discretized region.

It does so with two passes of Dijkstra’s algorithm, one from the start and one

from the goal. The calculated cost-to-come and cost-to-go are then combined to

compute an f -value for each abstract state, similar to how the f -value is computed

in A* (Section 2.2.1). An f -biased RRT or RRT* then proceeds as usual, except

that its sampling is biased to discretized regions with low f -values.

A similar idea can also be applied to kinodynamic and nonholonomic sampling-

based planning based on random control inputs (Plaku et al., 2010; Plaku, 2013,

2015). In a preprocessing phase, these approaches discretize the work space (e.g.,

with a triangulation) and identify promising discretized regions (e.g., by calculating

their cost-to-go with a reverse Dijkstra’s search starting from the goal). In the

planning phase, these promising regions are then used to guide the search of

incremental sampling-based planners by biasing them to extend states that map

to promising work-space regions.

Instead of using a triangulation to discretize the work space, Le and Plaku

(2014) use a PRM to discretize a simplified version of the search space that ignores

nonholonomic and kinodynamic constraints. Their approach first calculates the

cost-to-go of each state in this PRM with a reverse Dijkstra’s algorithm starting

from the goal. It then initializes a search tree rooted at the start state of the original

search space. Each iteration then extends a randomly selected state in this search

Adaptively Informed Trees (AIT*) 75

tree with a random control input, but the random state selection is biased towards

states that are close to PRM-states with low cost-to-go.

Instead of simplifying the search space by ignoring constraints, several approaches

exist that create simplified search spaces with lower-dimensional projections (Maly

and Kavraki, 2012; Orthey et al., 2018; Orthey and Toussaint, 2019; Orthey et al.,

2020; Westbrook and Ruml, 2020). These techniques bias the sampling of RRT-

based approaches or the selection of vertices in control-based planning by solving

simplified, lower-dimensional versions of the original path planning problem and

then mapping lower-dimensional states to the original search space.

Similar to the approaches of this section, AIT* leverages environment-specific

information in all aspects of sampling-based planning. Unlike these approaches, AIT*

directly leverages this information in its search by decoupling the approximation

from the search and neither relies on user-defined discretizations of the work space

nor on simplified abstractions or lower-dimensional projections of the search space.

4.2 Algorithm description

AIT* leverages optimization- and environment-specific information both when

approximating the search space and when searching this approximation. It approxi-

mates the search space with a similar series of increasingly dense, edge-implicit RGGs

as BIT* and ABIT*. These RGG approximations only contain valid states and are

focused on the relevant region of the search space with informed sampling (Gammell

et al., 2018). AIT* searches these approximations with an asymmetric bidirectional

search in which both searches continuously inform each other with complemen-

tary information. This bidirectional search is asymmetric both in purpose and

in computational cost (Alg. 6).

The reverse search of AIT* is an LPA* search that calculates an accurate cost

heuristic by combining admissible edge cost heuristics between multiple samples

Adaptively Informed Trees (AIT*) 76

Algorithm 6: Conceptual AIT*
1 repeat
2 improve RGG approximation (sampling)
3 calculate heuristic (reverse search)
4 while RGG approximation is useful do
5 find solution (forward search)
6 if found invalid edge or unprocessed state
7 update heuristic (reverse search)

8 until stopped

into a more accurate, but still admissible, cost-to-go heuristic between each sample

and the goal. This calculated cost-to-go heuristic considers the connectivity of

the current RGG approximation and therefore contains the environment-specific

information inherent in the observed distribution of valid samples. The reverse

search is computationally inexpensive because it does not evaluate true edge costs

and does not perform collision detection on the edges.

The forward search of AIT* is an edge-queue version of A* that efficiently finds

solutions to the given planning problem by leveraging the environment-specific

information in the calculated heuristic. If the forward search finds that the reverse

search used an invalid edge to calculate the heuristic, then it causes the reverse search

to update the heuristic with this information. The forward search is computationally

expensive, as it evaluates true edge costs and performs collision detections on the

edges, but focused on connections likely to yield a solution by the accurate heuristic

that is calculated with the reverse search.

Both searches process a similar series of increasingly dense, edge-implicit RGG

approximations as BIT* and ABIT*. Once the resolution-optimal solution is found

on a specific RGG approximation, then AIT* increases the density of this ap-

proximation by sampling more states and restarts its bidirectional search. This

process is repeated until stopped and almost-surely asymptotically converges to-

wards the optimal solution.

Adaptively Informed Trees (AIT*) 77

Algorithm 7: Adaptively Informed Trees (AIT*)
1 VF ← xstart; EF ← ∅
2 VR ← Xgoal; ER ← ∅
3 Xsampled ← {xstart} ∪Xgoal

4 QF ← expand (xstart); QR ← Xgoal

Initialization
(Section 4.2.2)

5 repeat
6 if continue_reverse_search ()

7 x← arg minx∈QR
{
keyAIT∗

R (x)
}

8 QR
−←− x

9 if ĥcon [x] < ĥexp [x]

10 ĥexp [x]← ĥcon [x]
11 else
12 ĥexp [x]←∞
13 update_state (x)

14 for all xi ∈ neighbors (x) do
15 update_state (xi)

Reverse search
(Section 4.2.3)

16 else if continue_forward_search ()

17 (xs,xt)← arg min(xs,xt)∈QF
{
keyAIT∗

F (xs,xt)
}

18 QF
−←− (xs,xt)

19 if (xs,xt) ∈ EF
20 QF

+←− expand (xt)

21 else if gF (xs) + ĉ (xs,xt) < gF (xt)
22 if collision_free (xs,xt)

23 if gF (xs) + c (xs,xt) + ĥcon [xt] < ccurrent

24 if gF (xs) + c (xs,xt) < gF (xt)
25 if xt 6∈ VF
26 VF

+←− xt

27 else
28 EF

−←− (parentF (xt) ,xt)

29 EF
+←− (xs,xt)

30 QF
+←− expand (xt)

31 ccurrent ← minxgoal∈Xgoal
{gF (xgoal)}

32 else
33 Einvalid

+←− {(xs,xt) , (xt,xs)}
34 if (xs,xt) ∈ ER
35 invalidate_reverse_branch (xs)

Forward search
(Section 4.2.4)

36 else
37 prune (Xsampled)

38 Xsampled
+←− sample (m, ccurrent)

39 VR ← Xgoal; ER ← ∅
40 QF ← expand (xstart); QR ← Xgoal

Approximation
(Section 4.2.5)

41 until stopped

Adaptively Informed Trees (AIT*) 78

4.2.1 Notation

AIT* is described using the same notation as ABIT* (Section 3.2.1) with minor

changes. The forward and reverse search trees are denoted by F = (VF , EF) and

R = (VR, ER), respectively. The vertices in these trees, denoted by VF and VR, are

associated with valid states. The edges in the forward tree, EF ⊆ VF×VF , represent

valid connection between states. The edges in the reverse tree, ER ⊆ VR × VR,

may lead through invalid states.

The functions parentF (·), parentR (·), childrenF (·) and childrenR (·)

return the parent and children of a state in the forward and reverse trees, respectively.

Symbols with square brackets denote labels, e.g., l[x] ∈ R refers to a real number, l,

associated with the state x. Labels keep their values until they are updated, i.e.,

they are used in AIT* similar to how g-values are used in A*.

4.2.2 Initialization

AIT* starts by initializing the forward and reverse search trees with the start and

goal states as their respective roots and the set of sampled states with the start and

goals (Alg. 7, lines 1–3). It then expands all outgoing edges of the start state into

the forward queue and inserts all goal states into the reverse queue (Alg. 7, line 4).

4.2.3 Reverse search

The reverse search of AIT* calculates an admissible cost-to-go heuristic for each

RGG approximation. This cost-to-go heuristic is calculated by combining a priori

admissible edge cost heuristics with an LPA* search that preserves the admissibility

of the heuristic between each state and the goal. The calculated cost-to-go heuristic

contains environment-specific information because the reverse search considers

the connectivity of the RGG approximation, which is determined by the current

distribution of valid samples. This reverse search is computationally inexpensive

because edges are not checked for collision and only evaluated with a cost heuristic.

Adaptively Informed Trees (AIT*) 79

Algorithm 8: AIT*: update_state (x)

1 if x 6= xstart

2 xs ← arg minxi∈neighbors(x)

{
ĥexp [xi] + ĉ (x,xi)

}
3 ĥcon [x]← ĥexp [xs] + ĉ (x,xs)
4 if x ∈ VR
5 ER

−←− (parentR (x) ,x)
6 else
7 VR

+←− x

8 ER
+←− (xs,x)

9 if ĥcon [x] 6= ĥexp [x]
10 if x 6∈ QR
11 QR

+←− x

12 else if x ∈ QR
13 QR

−←− x

The vertex queue of this reverse LPA* search is denoted by QR and lexico-

graphically ordered first by the heuristic total potential solution cost and then

by the reverse cost-to-come,

keyAIT∗

R (x) :=
(

min
{
ĥcon [x] , ĥexp [x]

}
+ ĝ (x) ,

min
{
ĥcon [x] , ĥexp [x]

})
,

where ĥcon [x] is the reverse cost-to-come to a state when it was first connected

or last rewired, ĥexp [x] is the reverse cost-to-come to a state when it was last

expanded, and ĝ (x) denotes an admissible a priori cost heuristic between a state

and the start. The ĥcon- and ĥexp-values are the g- and v-values in the forward

LPA* search presented by Aine and Likhachev (2016). This key is used to select

the next vertex in the reverse search (Alg. 7, lines 7 and 8).

An uninitialized LPA* search is used to calculate the cost-to-go heuristic on

the first batch of samples and after each new batch is added. This is more efficient

than incrementally updating the heuristic with LPA* for the large changes in the

graph that result from increasing its resolution (Koenig et al., 2004; Likhachev

Adaptively Informed Trees (AIT*) 80

Algorithm 9: AIT*: continue_reverse_search ()

1 if QF = ∅ or QR = ∅
2 return false

3 if ∀ (xs,xt) ∈ QF , ĥcon [xt] = ĥexp [xt] and ĥcon [xt] + ĝ (xt) ≤ min
x∈QR

{
ĥcon [x] + ĝ (x)

}
4 return false

5 (x∗s ,x
∗
t)← get_best_edge (QF)

6 x∗ ← get_best_vertex (QR)

7 if ĥcon [x∗t] = ĥexp [x∗t] and

gF (x∗s) + ĉ (x∗s ,x
∗
t) + ĥcon [x∗t] ≤ min

{
ĥcon [x∗] , ĥexp [x∗]

}
+ ĝ (x∗)

8 return false

9 return true

and Koenig, 2005; Aine and Likhachev, 2016). An uninitialized LPA* search is

started by clearing the reverse search tree (except for the goals), which resets the

ĥcon- and ĥexp-values of all cleared states to infinity, and inserting the goals into

the reverse queue (Alg. 7, lines 2, 4, 39, and 40).

The heuristic is updated when an edge in the reverse search tree is found to

be invalid. This is achieved efficiently by repairing the reverse search tree with

LPA*. AIT* resets the calculated cost-to-go of all states in the affected branch

of the reverse tree, inserts the necessary states into the reverse queue, and runs

the reverse search to update the calculated cost-to-go as necessary (Alg. 10). The

heuristics edge costs are evaluated in the reverse search from the target to the

source to ensure admissible calculated cost heuristics for the forward search if the

edge cost heuristic is not symmetric in its arguments (Alg. 8, lines 2 and 3).

4.2.3.1 Termination and suspension conditions

The reverse search calculates the admissible cost heuristic in a just-in-time manner

and is terminated or suspended under multiple conditions. The reverse search is

terminated if the reverse queue is empty (Alg. 9, lines 1 and 2). The reverse search

is also terminated if the forward queue is empty (Alg. 9, lines 1 and 2), because the

reverse search cannot fill the forward queue and an empty forward queue terminates

the forward search (Alg. 7, line 16, and Alg. 11, lines 1 and 2).

Adaptively Informed Trees (AIT*) 81

The reverse search is suspended if all edges in the forward queue have consistent

target states with a key-value less than or equal to the minimum key-value in the

reverse queue (Alg. 9, line 3 and 4). The reverse search is also suspended if the

heuristic total potential solution cost of the best state in the reverse queue is higher

than or equal to the total potential solution cost of the best edge in the forward

queue and the target state of that edge is consistent (Alg. 9, lines 5–8).

The last suspension condition allows the forward search to continue even if

some edges in its queue have suboptimally connected targets. The forward search

is still ordered according to an admissible cost heuristic because the suspension

condition guarantees that the next best edge in the forward queue is known at

each iteration (Section 4.3.1).

4.2.4 Forward search

AIT* finds solutions to a planning problem by building a search tree rooted at the

start with an edge-queue version of A* that leverages the heuristic calculated by the

reverse search. AIT* uses an edge-queue version of A* to delay expensive edge evalu-

ations, similar to LWA*. This queue is denoted by QF and lexicographically ordered

first by the total potential solution cost of an edge, then by the potential cost-to-come

to the target of the edge, and then by the cost-to-come to the source of the edge,

keyAIT∗

F (xs,xt) :=
(
gF (xs) + ĉ (xs,xt) + ĥcon [xt] ,

gF (xs) + ĉ (xs,xt) ,

gF (xs)
)
.

A forward search iteration begins by extracting the edge with the lowest key-

value, keyAIT∗

F , from the forward queue (Alg. 7, lines 17 and 18). If this edge is

already part of the forward tree, then its target state is expanded and the iteration

Adaptively Informed Trees (AIT*) 82

Algorithm 10: AIT*: invalidate_reverse_branch (x)

1 if x 6∈ Xgoal

2 ĥcon [x]←∞
3 ER

−←− (parentR (x) ,x)

4 ĥexp [x]←∞
5 QR

−←− x
6 for xc ∈ childrenR (x) do
7 invalidate_reverse_branch (xc)

8 update_state (x)

is complete (Alg. 7, lines 19 and 20). If the edge is not in the forward tree but can

possibly improve it, then it is checked for validity (Alg. 7, lines 21 and 22). If the

edge is invalid, then it is added to the set of invalid edges and if it is also part of

the reverse tree, then the affected branch of the reverse search is invalidated (Alg. 7,

lines 33 and 35, and Alg. 10). If the edge is valid, then its true cost is evaluated

and it is checked whether the edge can actually improve the current solution and

forward tree (Alg. 7, lines 23 and 24).

If the edge can improve the current solution and forward tree, then its target

state is added to this tree if it is not already in it (Alg. 7, lines 25 and 26). If it is

already in the forward search tree, then the new edge constitutes a rewiring and the

old edge is removed from the tree (Alg. 7, line 28). The new edge is added to the

forward tree and its target state is expanded regardless of whether the target state

was already in the tree or not (Alg. 7, lines 29 and 30, and Alg. 12). A forward

search iteration finishes by updating the current solution cost (Alg. 7, line 31).

4.2.4.1 Termination conditions

The forward search is terminated under multiple conditions. The forward search

is terminated if the forward queue is empty (Alg. 11, lines 1 and 2). The forward

search is also terminated if no edge in the forward queue has a target in the reverse

search tree (Alg. 11, lines 3 and 4), because then the start and goal are not in

the same component of the current RGG approximation and it is impossible for

Adaptively Informed Trees (AIT*) 83

Algorithm 11: AIT*: continue_forward_search ()

1 if QF = ∅
2 return false

3 if ∀ (xs,xt) ∈ QF , ĥcon [xt] =∞
4 return false

5 if ccurrent < min(xs,xt)∈QF

{
gF (xs) + ĉ (xs,xt) + ĥcon [xt]

}
6 return false

7 return true

AIT* to find a solution without improving its approximation. The forward search

is also terminated if no edge in the forward queue can possibly improve the current

solution with the current RGG approximation (Alg. 11, lines 5 and 6), because

then AIT* has found the resolution-optimal solution and can only improve it by

improving its approximation first.

If the forward search is terminated, then AIT* clears the reverse tree, improves

the approximation, and resets the search queues (Alg. 7, lines 37–40). The next main

loop iteration (Alg. 7, lines 5–41) will then restart the reverse search. This process is

repeated for as long as computational time allows or until a suitable solution is found.

This results in a progressively more accurate heuristic for increasingly efficient

searches of ever more refined approximations and almost-surely asymptotically

converges to the optimal solution in the limit of infinite samples (Section 4.3).

4.2.5 Approximation

AIT* uses a series of increasingly dense, edge-implicit RGGs to approximate the

search space, similar to BIT* and ABIT*. It also uniformly samples batches

of m valid states using informed sampling when possible, and implicitly defines

connections between these states either by a connection radius, r, or by the k-

nearest neighbors (Alg. 13, line 1).

The k-nearest connection model generally does not result in symmetric neighbors

and special care must be taken to add each sample to the neighbors of its k-nearest

Adaptively Informed Trees (AIT*) 84

Algorithm 12: AIT*: expand (X)

1 Eout ← ∅
2 for all xi ∈ X do
3 for all xj ∈ neighbors (xi) do
4 Eout

+←− (xi,xj)

5 return Eout

Algorithm 13: AIT*: neighbors (x)

1 Vneighbors ← nearest (x, r or k)

2 Vneighbors
+←− {parentF (x) ∪ childrenF (x)} \ Vneighbors

3 Vneighbors
−←− {xi ∈ Vneighbors | (x,xi) ∈ Einvalid}

4 return Vneighbors

Algorithm 14: AIT*: prune (V,E,Xsampled)

1 Xsampled ←
{
x ∈ Xsampled

∣∣∣ f̂ (x) ≤ ccurrent

}
2 VF ←

{
x ∈ VF

∣∣∣ f̂ (x) ≤ ccurrent

}
3 EF ←

{
(xs,xt) ∈ EF

∣∣∣ f̂ (xs) ≤ ccurrent and f̂ (xt) ≤ ccurrent

}

neighbors. Otherwise the reverse and forward searches may process different graphs,

which can result in inadmissible heuristics for the forward search. A consequence of

this is that, in contrast to BIT* and ABIT*, AIT* considers the mutual k-nearest

neighbors of each sample, i.e., each sample is connected to its k-nearest neighbors

and all samples that it is a k-nearest neighbor of (as in FMT*; Janson et al., 2015).

The connection parameters, r and k, again scale as in PRM* (Karaman and Fraz-

zoli, 2011), using the measure of the informed set as in BIT* (Gammell et al., 2020),

r(q) := 2η

(
1 +

1

n

) 1
n

min
{
λ (X) , λ

(
Xf̂

)}
λ (B1,n)


1
n(

log (q)

q

) 1
n

k(q) := η e

(
1 +

1

n

)
log (q) ,

where q is the number of samples in the informed set, η > 1 is a tuning parameter,

λ (·) denotes the Lebesgue measure, and B1,n is an n-dimensional unit ball. These

are the same connection parameters as in ABIT* and are presented again in

Adaptively Informed Trees (AIT*) 85

this chapter for completeness. AIT* considers the combination of both this RGG

definition and any existing connections in the forward tree (Alg. 13, lines 1 and 2) and

ignores edges known to be invalid (Alg. 13, line 3). Graph complexity is again reduced

by pruning samples that are not in the informed set (Alg. 7, line 37, and Alg. 14).

4.3 Analysis

As in the analysis of ABIT*, this analysis uses the fact that a sampling-based

planning algorithm is almost-surely asymptotically optimal if its approximation

almost-surely contains an asymptotically optimal solution and the graph-search algo-

rithm is resolution-optimal. The almost-sure asymptotic optimality of AIT* follows

again from proven properties of its approximation and graph-search algorithms.

The approximation constructed by AIT* almost-surely contains an asymptoti-

cally optimal solution because it contains all the edges in PRM* for any set of samples

and PRM* is almost-surely asymptotically optimal (Karaman and Frazzoli, 2011).

The forward search of AIT* is resolution-optimal because A* is a resolution-

optimal algorithm if it is provided with an admissible cost heuristic (Hart et al., 1968).

Section 4.3.1 shows that the forward search processes edges as if all edge targets in its

queue had an admissible cost heuristic if the reverse search is suspended as in AIT*.

The reverse search of AIT* without collision detection results in an admissible

cost heuristic because checking collisions cannot decrease path cost and LPA* is a

resolution-optimal algorithm (Aine and Likhachev, 2016). AIT* is therefore almost-

surely asymptotically optimal when provided with a consistent a priori heuristic.

4.3.1 Reverse search suspension condition

This section shows that it is unnecessary to continue the reverse search of AIT* if at

least one of its two reverse search suspension conditions is satisfied. AIT* suspends

the reverse search if all edges in the forward queue have consistent target states with

Adaptively Informed Trees (AIT*) 86

a key-value less than or equal to the minimum key-value in the reverse queue (Alg. 9,

line 3 and 4), because this guarantees that all of these edge targets are optimally

connected in the reverse tree and the forward queue is therefore ordered according

to an admissible cost heuristic (Theorem 2; Koenig et al., 2004).

AIT* also suspends the reverse search if the heuristic total potential solution

cost of the best state in the reverse queue is higher than or equal to the total

potential solution cost of the best edge in the forward queue and the target state of

that edge is consistent (Alg. 9, lines 5–8), because this guarantees that the target

state of the best edge in the forward queue is optimally connected in the reverse tree

and no edge in the forward queue with a suboptimally connected target state would

be better than this edge if its target state was optimally connected (Theorem 2).

Theorem 2 (AIT* reverse search suspension condition). Let the cost-to-come

heuristic be defined by the edge cost heuristic, ĝ (x) := ĉ (xstart,x), and let this

heuristic be consistent. If the heuristic total potential solution cost of the best vertex

in the reverse queue is greater than or equal to the total potential solution cost of

the best edge in the forward queue,

min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥcon

[
xFt
]}
,

and the best edge in the forward queue has a consistent target state, then this target

has an admissible calculated cost heuristic and the best edge in the forward queue

will not be changed by continuing the reverse search.

Proof. Proving the theorem requires showing that if the reverse search is suspended,

then the target state of the best edge in the forward queue is optimally connected

in the reverse tree and no edge in the forward queue with a suboptimally connected

target would be better than the best edge if the target was optimally connected. It

Adaptively Informed Trees (AIT*) 87

is first shown that the target state of the best edge in the forward queue is optimally

connected in the reverse tree if the suspension condition is satisfied.

Let (x∗s ,x
∗
t) be the best edge in the forward queue,

(x∗s ,x
∗
t) := arg min

(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥcon

[
xFt
]}
. (4.1)

By the definition and consistency of the cost-to-come heuristic, ĝ (·), it holds that

ĝ (x∗t) = ĉ (xstart,x
∗
t) ≤ ĉ (xstart,x

∗
s) + ĉ (x∗s ,x

∗
t) = ĝ (x∗s) + ĉ (x∗s ,x

∗
t)

and since ĝ (x∗s) ≤ gF (x∗s) by the admissibility of ĝ (·), it holds that

ĝ (x∗t) ≤ gF (x∗s) + ĉ (x∗s ,x
∗
t) .

Adding ĥcon [x∗t] to both sides of this inequality yields

ĥcon [x∗t] + ĝ (x∗t) ≤ gF (x∗s) + ĉ (x∗s ,x
∗
t) + ĥcon [x∗t] . (4.2)

As the edge (x∗s ,x
∗
t) is the best in the forward queue (Equation 4.1) and Theo-

rem 2 suspends the reverse search if the minimum key-value in the reverse queue is

greater than or equal to the cost of this edge, the right hand side of Equation 4.2

must be less than or equal to the minimum key-value in the reverse queue,

gF (x∗s) + ĉ (x∗s ,x
∗
t) + ĥcon [x∗t]

≤ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}
. (4.3)

Combining Equations 4.2 and 4.3 yields,

ĥcon [x∗t] + ĝ (x∗t) ≤ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}
. (4.4)

Adaptively Informed Trees (AIT*) 88

Theorem 2 requires the target state of the best edge, x∗t , to be consistent. The

connected and expanded versions of its cost-to-come are therefore equal,

ĥcon [x∗t] = ĥexp [x∗t]
(

=⇒ ĥcon [x∗t] = min
{
ĥcon [x∗t] , ĥexp [x∗t]

})

such that Equation 4.4 can be rewritten as

min
{
ĥcon [x∗t] , ĥexp [x∗t]

}
+ ĝ (x∗t)

≤ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}
. (4.5)

The left hand side of this inequality is the reverse key-value of the target state

of the best edge in the forward queue, x∗t , which is therefore shown to be upper

bounded by the minimum key-value in the reverse queue.

Since the suspension condition of Theorem 2 requires the target state of the

best edge in the forward queue, x∗t , to be consistent and all consistent states with a

key-value less than or equal to the minimum key-value in the queue are optimally

connected by an LPA* search (Theorem 2; Koenig et al., 2004), the state x∗t is

optimally connected and its calculated cost-to-go is an admissible cost heuristic for

the forward search on the current RGG approximation.

It is now shown that no edge in the forward queue with a suboptimally connected

target in the reverse tree would be better than the best edge in the forward queue if

its target were optimally connected. First, a lower bound is derived on the optimal

heuristic cost-to-go of the target state of any currently suboptimally connected edge

in the forward queue. This lower bound is then used to prove that the suspension

condition of Theorem 2 ensures that no edge in the forward queue with suboptimally

connected target state would have a lower total potential solution cost than the

best edge in the queue if its target state were optimally connected.

Let (xs,xt) be any edge in the forward queue with a suboptimally connected

Adaptively Informed Trees (AIT*) 89

target, xt. Let its unknown optimal cost-to-go through the reverse tree be ĥ∗con [xt].

The total potential solution cost through the state xt is lower bounded by the

minimum value in the reverse queue,

ĥ∗con [xt] + ĝ (xt) ≥ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}
,

because the key-values in an LPA* search are monotonically nondecreasing (Theorem

1; Koenig et al., 2004). Rearranging this inequality yields a lower bound on the

value of the optimal connection cost of the target state, ĥ∗con [xt],

ĥ∗con [xt] ≥ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ (x)
}
− ĝ (xt) . (4.6)

This lower bound is now used to prove that the suspension condition of the

theorem ensures that the edge (xs,xt) would not have the lowest total potential

solution cost in the forward queue even if its target were optimally connected.

Theorem 2 states that the search can be suspended when the heuristic total

potential solution cost of the best vertex in the reverse queue is greater than or

equal to that of the best edge in the forward queue,

min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥcon

[
xFt
]}
.

If this condition is satisfied, then it must also be true that

gF (xs) + ĉ (xs,xt)− ĝ (xt)︸ ︷︷ ︸
nonnegative

+ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥcon

[
xFt
]}
,

where the underbraced term is nonnegative due to the consistency of the heuristics

Adaptively Informed Trees (AIT*) 90

ĝ (·) and ĉ (· , ·). Rearranging this equation yields

gF (xs) + ĉ (xs,xt)

+ min
xR∈QR

{
min

{
ĥcon

[
xR
]
, ĥexp

[
xR
]}

+ ĝ
(
xR
)}
− ĝ (xt)︸ ︷︷ ︸

lower bound on ĥ∗con[xt]

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥcon

[
xFt
]}
,

where the underbraced term is the lower bound on the optimally connected cost of

the target state, ĥ∗con [xt], from Equation 4.6. Substituting this lower bound yields

gF (xs) + ĉ (xs,xt) + ĥ∗con [xt] ≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥcon

[
xFt
]}
,

which proves that the total potential solution cost of the edge (xs,xt) would be

greater than or equal to the total potential solution cost of the best edge in the

forward queue even if its target state, xt, were optimally connected. This proves that

continuing the reverse search if the suspension condition of Theorem 2 is satisfied

will not change the best edge in the forward queue and is therefore unnecessary.

4.4 Evaluation

AIT* was evaluated against the OMPL implementations of RRT-Connect, FMT*,

Lazy PRM*, Informed RRT*, BIT*, and ABIT* on Reeds-Shepp car problems (Sec-

tion 4.4.1), a robotic manipulator arm problem (Section 4.4.2), and a knee replace-

ment dislocation problem (Section 4.4.3). Asymptotically optimal planners again

optimized path length in search space and informed planners again used the Eu-

clidean distance as admissible cost heuristic. The performances of all planners were

again evaluated statistically by letting all tested planners attempt each problem

100 times. The settings of all planners were kept as in Section 3.4. AIT* used the

same approximation parameters as BIT* and ABIT*, i.e., sampled 100 states per

batch and used the k-nearest RGG connection strategy with a factor of η = 1.001

regardless of the problem dimension.

Adaptively Informed Trees (AIT*) 91

RRT-C. Inf. RRT* FMT* Lazy PRM* BIT* ABIT* AIT*

198 (99%) 179 (89.5%) 186 (93%) 180 (90%) 188 (94%) 186 (93%) 164 (82%)

Table 4.1: The numbers (and percentages) of the 200 Reeds-Shepp car problem instances
on which the tested planners achieved a success rate of at least 50%. AIT* is the least
reliable tested planner on this problem. Section 4.5 discusses potential reasons for this
poor performance and ideas on how to mitigate them.

4.4.1 Reeds-Shepp car problems

AIT* was tested against the other planners on the same 200 instances of the Reeds-

Shepp problem as ABIT* (Section 3.4.2). Figure 4.2 shows the best and worst

performances of AIT* again in terms of its median initial solution time relative to

the fastest median initial solution time of the other tested planners, limited to the

problem instances where AIT* achieved at least 50% success rate (Table 4.1).

The results show that AIT* never outperforms all other tested planners on

any instance of the Reeds-Shepp car problem. One reason for the poor relative

performance of AIT* on these problems is that the obstacles are small relative

to the extent of the search space (Figure 3.3). Small obstacles do not sufficiently

impact the connectivity of the RGG approximations because they only induce small

irregularities in the observed distribution of valid samples.

Another reason for the poor relative performance of AIT* on these problems

is that the collision detection is relatively inexpensive due to the low collision

detection resolution and simple, rectangular shapes of the car and obstacles. This

decreases the computational cost of the forward search, which benefits the absolute

performance of the other tested planners more than that of AIT*.

The combination of these effects leads to a calculated heuristic with too little

improved accuracy to offset the computational cost of calculating it. Techniques to

improve the performance of asymmetric bidirectional searches on such problems

are discussed in Section 4.5 and implemented in Chapter 5.

Adaptively Informed Trees (AIT*) 92

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100

1

1.5

2

2.5

Computation time [s]

C
os

t

(a) Best relative performance of AIT*

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100

1.5

2

2.5

Computation time [s]

C
os

t

(b) Worst relative performance of AIT*

RRT-Connect Informed RRT* FMT* Lazy PRM* BIT* ABIT* AIT*

Figure 4.2: The planner performances on the Reeds-Shepp car problem that resulted in
the best (a) and worst (b) performances of AIT* relative to the other tested planners (Sec-
tion 4.4.1). The results show that AIT* never outperforms all other tested planners on
any instance. On the best instance for AIT*, it performs similarly to Informed RRT* but
is outperformed by the other tested planners in terms of median initial solution times and
success rates (a). On the worst instance for AIT*, it is outperformed by all other tested
planners in terms of median initial solution times and success and convergence rates (b).
Section 4.5 discusses potential reasons for this poor performance and ideas on how to
mitigate them.

Adaptively Informed Trees (AIT*) 93

4.4.2 Manipulator arm problem

The relative performance of AIT* improves when evaluated on problems where

collision detection is more expensive, e.g., due to more complex geometries of

search-space obstacles. This was the case when the planners were tested on a path

planning problem for a single Barret Whole-Arm Manipulator (WAM) with seven

degrees of freedom. This problem simulates the movement of a pick-and-place

scenario, where the arm is required to pick up a small cube from a table and

place it into a large box (Figure 4.3).

The problem was set up in the Open Robotics Automation Virtual Environ-

ment (OpenRAVE; Diankov, 2010), which was configured to use the Flexible Colli-

sion Library (FCL; Pan et al., 2012) with Oriented Bounding Box (OBB; Gottschalk

et al., 1996) tree representations for collision detection. The time limit was 200 sec-

onds per attempt and the collision detection resolution was 3.6·10−3. This resolution

resulted in a 1% false-negative detection rate for invalid edges on a representative

problem, i.e., 1% of invalid edges are thought to be valid at this resolution.

Figure 4.4 shows the performances of all tested planners on this problem. The

results show that on this problem AIT* performs better than Informed RRT* and

FMT* and equally well as BIT* and ABIT*. AIT* is among the fastest tested

planners to reach 100% success rate. The only two tested planners with faster median

initial solutions times are RRT-Connect and Lazy PRM*. But RRT-Connect is

not an anytime algorithm and does not improve the quality of its solution given

more computation time. Lazy PRM* is an anytime algorithm but has the slowest

convergence rate of all tested anytime algorithms on this problem and finds the

lowest-quality solution in the available time.

Adaptively Informed Trees (AIT*) 94

(a) Start (b) Start side view (c) Start front view (d) Start top view

(e) Goal (f) Goal side view (g) Goal front view (h) Goal top view

Figure 4.3: Illustrations of the single-arm manipulator problem (Section 4.4.2). The top
row shows the start configuration of the arm in position to pick up the red cube (a–d). The
bottom row shows the goal configuration of the arm in position to place it in the box (e–h).

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100 101 102
0

10

20

Computation time [s]

C
os

t

RRT-Connect Informed RRT* FMT* Lazy PRM* BIT* ABIT*

Figure 4.4: The planner performances on the manipulator arm problem described in Sec-
tion 4.4.2 (Figure 4.3). The results show that AIT* performs as well as BIT* and ABIT*.
In terms of success rates, AIT* can solve this problem as reliably as the most reliable plan-
ners (RRT-Connect, Lazy PRM*, BIT*, and ABIT*). In terms of initial solutions, AIT*
is as fast as BIT* and ABIT* but is outperformed by the fastest planners (RRT-Connect
and Lazy PRM*). In terms of convergence rate, AIT* is again as good as Informed RRT*,
BIT* and ABIT*, which all find better solutions than Lazy PRM* in the available time.

Adaptively Informed Trees (AIT*) 95

4.4.3 Knee replacement dislocation problem

Environment-specific information can also improve performance on the feasible

planning problem by guiding the search towards the goal. The knee replacement

dislocation problem evaluates the potential of medial dislocation for the Oxford

Domed Lateral Unicompartmental Knee Replacement (UKR; Pandit et al., 2010,

Figure 4.5) by searching for a path to free the mobile bearing.1

The Oxford Domed Lateral UKR consists of metal femoral and tibial components

which are fixed to the bone and a mobile polythylene bearing which separates the

metal components (Gunther et al., 1996). Medial dislocation can occur when there

is enough space between the femoral and tibial components for the mobile bearing

to move onto the tibial-component wall where it may be trapped by the femoral

component. The dislocation risk for different relative poses of the femoral and tibial

components has been analyzed by using planning algorithms to search for paths

that allow the bearing to reach a region representative of dislocation (Yang et al.,

2020, 2021a,b). Figure 4.5 illustrates the search space, the fixed poses of the tibial

and femoral components, and the start state and goal region of the mobile bearing

used for this problem. The time limit was 200 seconds per attempt and the collision

detection resolution was set to 0.0001 (as by Yang et al., 2020).

This problem requires a fine collision detection resolution and detailed Computer-

Aided Design (CAD) models of all UKR components to ensure a valid assessment

of the surgical tolerances. The combination of these two characteristics greatly

increases the computational cost of collision detection. Computationally expensive

collision detection improves the relative performance of AIT*, because it increases

the benefits of using accurate heuristics to guide the (forward) search.

Figure 4.6 shows the performance of all tested planners on this problem ex-

cluding RRT-Connect, whose OMPL implementation does not support planning
1This problem used an approximation of the Oxford Domed Lateral UKR due to copyright

restrictions.

Adaptively Informed Trees (AIT*) 96

(a) Original from
Pandit et al. (2010)

(b) Approximation
with start state

(c) Search space (red)
and goal region (green)

(d) Example goal
state

Figure 4.5: A multiview illustration of the knee replacement dislocation problem (Sec-
tion 4.4.3). The original 3D model of the Oxford Domed Lateral UKR (a) is reproduced
from Figure 1 in Pandit et al. (2010). The experiments presented in this thesis used a
simplified approximation of the Oxford Domed Lateral UKR (b). A medial dislocation
occurs when the center of the mobile bearing moves from the red to the green region (c).
The goal region is the set of bearing positions in medial dislocation between the fixed
femoral and tibial components (d).

0

25

50

75

100

Su
cc

es
s

[%
]

101 102
10

20

30

Computation time [s]

C
os

t

RRT Informed RRT* FMT* Lazy PRM* BIT* ABIT* AIT*

Figure 4.6: The planner performances on the knee replacement dislocation problem
described in Section 4.4.3 (Figure 4.5). The results show that AIT* outperforms all other
tested planners on this problem. In terms of success rates, AIT* finds solutions more
reliably than any other tested planner. In terms of initial solutions, AIT* finds them
faster than any other tested planner. In terms of convergence rate, AIT* finds the best
solutions of any tested planner.

Adaptively Informed Trees (AIT*) 97

with goal regions. These results demonstrate the benefits of environment-specific

information in sampling-based planning with computationally expensive collision

detection. AIT* is the first planner to reach 100% success rate, returns the best-

quality median solution at any time during the experiment, and has the fastest

median initial solution time.

4.5 Discussion

It is often impossible or prohibitively complex to analytically represent the search-

space obstacles of a planning problem, but algorithmically checking whether a single

state is collision-free is often computationally feasible. This property is exploited by

sampling-based algorithms. They sample individual states, check them for collision,

and search for valid connections between samples that are collision-free.

Checking samples for collision reveals information about the environment of

a search space. This environment-specific information is used by all sampling-

based planners to build an approximation of the search space, but most planners

ignore this information when searching this approximation. For example, BIT* and

ABIT* use this information to build a series of increasingly dense, edge-implicit RGG

approximations whose vertices are valid samples. But when BIT* and ABIT* search

this approximation, they treat it as an abstract graph and ignore the information

contained in the distribution of its vertices.

This chapter presents AIT*, a sampling-based planning algorithm that leverages

optimization- and environment-specific information both when approximating the

search space and when searching this approximation. It achieves this with a hierar-

chical bidirectional search that is asymmetric in both purpose and computational

cost (anecdotally, processing a vertex in the reverse search on average only took 7%

as long as processing an edge in the forward search on a representative example

with abstract obstacles). The inexpensive reverse search calculates an accurate,

Adaptively Informed Trees (AIT*) 98

admissible cost heuristic for the current approximation by combining admissible edge

cost heuristics between multiple samples while considering the potential connections

of the current RGG approximation. The expensive forward search leverages this

accurate heuristic to find a solution to the given planning problem and informs the

reverse search about invalid states in the RGG connections it considered.

The performance improvement of AIT* depends on the proportion of the com-

putational cost incurred by the reverse search when calculating the heuristic as

compared to the computational savings gained by the forward search when leverag-

ing this heuristic. AIT* therefore performs best relative to other planners when the

calculated heuristic results in large computational savings, as is the case when full

edge evaluation is computationally expensive. The knee replacement dislocation

problem (Section 4.4.3) is an example of expensive edge evaluation, because it

requires high-quality CAD-models of the knee replacement which makes collision

detection computationally expensive.

The performance improvement of AIT* also depends on the size of the obstacles

relative to the search space, because the additional information of its calculated

heuristic is due to obstacle-induced irregularities in the observed distribution of valid

samples. If the search-space obstacles are too small to cause large irregularities, then

there is not much information to be discovered with the reverse search. The Reeds-

Shepp car problems (Section 4.4.1) are examples of small obstacles that do not affect

the distribution of valid states enough to offset the computational cost of the reverse

search, which is why AIT* is outperformed by other planners on these problems.

One way to improve performance on such problems is to perform sparse collision

detection on the edges during the reverse search. This can discover smaller obstacles

without incurring large computational cost, such that an asymmetric bidirectional

search can be competitive even when search-space obstacles are small. Another

way to improve the performance of AIT* is to combine it with an anytime forward

search, similar to how ABIT* improves the performance of BIT*. Both of these

Adaptively Informed Trees (AIT*) 99

approaches are explored in Chapter 5. AIT* could potentially also be improved

by using truncation similar to ABIT* but this was not implemented in AIT* to

avoid increasing its algorithmic complexity.

In summary, this chapter presented the following core contributions:

• A review of sampling-based algorithms that leverage environment-specific

information to guide their search and a discussion of their main conceptual

differences to AIT* (Section 4.1).

• A detailed description of AIT*, which is a sampling-based planning al-

gorithm with a new asymmetric bidirectional search paradigm that lever-

ages environment-specific information in all aspects of sampling-based plan-

ning (Section 4.2).

• A proof of the almost-sure asymptotic optimality of AIT* that combines

established results with a new result on its reverse search (Section 4.3).

• Empirical demonstrations of the benefits (and shortcomings) of AIT* on

nonholonomic, manipulator, and biomedical problems (Section 4.4).

• A discussion of the empirical results and potential ways to improve asymmetric

bidirectional searches in sampling-based planning (Section 4.5).

Chapter 5

Effort Informed Trees (EIT*)
The benefits of intent-specific information

Contents
5.1 Literature review . 103

5.2 Algorithm description . 106

5.3 Analysis . 119

5.4 Evaluation . 124

5.5 Discussion . 137

Path planning problems often have specific priorities. For examble, mobile

robots in dynamic environments must potentially react to unexpected changes in

their surroundings. These systems prioritize solution time over solution quality

because not knowing how to react at all may be catastrophic.

Algorithms designed for such problems should reflect these priorities in their

searches, but few planners directly align their searches with the priorities of the

problems they are intended for. Many planners instead address these priorities by

modifying their searches with indirect mechanisms that rely on implicit assumptions.

For example, ABIT* seeks to accelerate initial solution times by inflating a cost

heuristic. This can work, but implicitly assumes that the cost of a path correlates

with the computational effort required to find it. This assumption is not always valid

and can be removed by directly considering computational effort during the search.

100

Effort Informed Trees (EIT*) 101

(a) (b) (c) (d) (e)

Figure 5.1: Five snapshots of how EIT* searches a planning problem when optimizing
obstacle clearance. EIT* starts by initializing the approximation and calculating cost and
effort heuristics with a reverse search without full edge evaluation (a). EIT* then leverages
these heuristics with its forward search to find initial solutions quickly. This forward
search is greedily ordered on the effort heuristic until the initial solution is found (b).
Once the initial solution is found, the forward search uses the calculated cost heuristics
to find a resolution-optimal solution on the current approximation (c). Having found
the resolution-optimal solution, EIT* improves the approximation, updates the heuristic,
and aims to find the next best resolution-optimal solution with minimal computational
effort (d). EIT* repeats these steps until it is stopped and almost-surely asymptotically
converges towards the optimal solution given infinite computation time (e).

Computational effort is platform-specific and difficult to quantify, but collision

detection and nearest-neighbor search are known to be the two computational

bottlenecks in sampling-based planning (Sánchez and Latombe, 2003; Hauser, 2015;

Kleinbort et al., 2016, 2020). Collision detection dominates the share of computa-

tional time early during the planning process while nearest-neighbor searches take

over as the number of samples increases (Hauser, 2015; Kleinbort et al., 2016, 2020).

The number of collision checks required to find a solution is therefore a good

proxy for computational effort when initial solution times are a priority. This

number is equal to the length of a path divided by the collision detection resolution.

The exact length of a solution is unknown a priori but can be estimated with the

Euclidean distance between its start and end states. This provides a method to

express intent-specific information about the computational effort required to find

a solution as an effort heuristic that estimates the number of collision checks.

This chapter presents EIT*, a sampling-based planning algorithm that searches

problems according to their priorities by leveraging intent-, optimization-, and

Effort Informed Trees (EIT*) 102

environment-specific information. EIT* uses these three sources of complementary

information to simultaneously calculate and leverage two cost heuristics and one

effort heuristic with a hierarchical bidirectional search that is asymmetric in purpose

and computational cost, similar to AIT* (Figure 5.1).

The remainder of this chapter is organized as follows. It first presents a literature

review of sampling-based planners and graph-search algorithms that leverage effort

heuristics to guide their search (Section 5.1). It then presents a detailed description

of EIT* (Section 5.2) and combines established results from the literature on

sampling-based planning and graph-based search to prove its almost-sure asymptotic

optimality (Section 5.3). The performance of EIT* is then evaluated by comparing

it to other planners on many of the problems that were previously presented in this

thesis, but with an additional optimization objective (Section 5.4). The chapter

concludes by discussing these results and the insights they provide (Section 5.5).

The core contributions of this chapter are:

• A review of sampling-based planners and graph-search algorithms that use

effort heuristics to guide their search (Section 5.1).

• A detailed presentation of EIT*, which demonstrates how to align the search

of a continuous problem with its ultimate purpose by leveraging optimization-,

environment-, and intent-specific information (Section 5.2).

• A proof that combines established results from the literature on sampling-

based planning and graph-based search to show that EIT* is almost-surely

asymptotically optimal (Section 5.3).

• Empirical demonstrations of the benefits of EIT* on multiple abstract, Reeds-

Shepp, and manipulator problems, and one biomedical problem (Section 5.4).

The work on EIT* was has been accepted for publication in the International

Journal of Robotics Research (IJRR; Strub and Gammell, 2021b).

Effort Informed Trees (EIT*) 103

5.1 Literature review

EIT* leverages optimization-, environment-, and intent-specific information in the

form of admissible and inadmissible cost and effort heuristics. The literature reviews

in Chapters 3 and 4 review the literature on optimization- and environment-specific

information in sampling-based planning. This section focuses on the literature

that calculates and exploits intent-specific information in the form of effort heuris-

tics. Bayesian Effort-Aided Search Trees (BEAST; Kiesel et al., 2017) is the only

other sampling-based algorithm that explicitly considers computational effort when

ordering its search. BEAST is reviewed in detail in Section 5.1.1. Guiding the

search with effort heuristics is more common in graph-based search. Graph-search

algorithms that leverage effort heuristics are reviewed in Section 5.1.2.

5.1.1 Bayesian Effort-Aided Search Trees (BEAST)

BEAST is a sampling-based planning algorithm specialized for kinodynamic systems

that aims to find solutions quickly by prioritizing low-effort paths. It first discretizes

an abstraction of the search space into disjoint regions. It does so by building a

PRM (Kavraki et al., 1996) in a version of the search space without kinodynamic

constraints and defining regions by their nearest PRM-samples.

BEAST maintains estimates about the computational effort required to find a

kinodynamically feasible path between adjacent regions and updates these estimates

in a Bayesian manner each time it attempts to find a path between two regions.

These effort estimates are associated with directed edges in the PRM so that

BEAST can find low-effort paths from all regions to the goal by searching this PRM

outward from the goal with D* Lite (Koenig and Likhachev, 2002). This assigns

each region an effort-to-go value that reflects the current best estimate about how

much computational effort is required to reach the goal from this region. These

values are used to bias the sampling in BEAST.

Effort Informed Trees (EIT*) 104

BEAST initializes its search queue with all PRM-edges that have the region of

the start state as the source. This queue is ordered on the total estimated effort-to-

go, i.e., the estimated effort of the PRM-edge plus the estimated effort-to-go of the

target region of the edge. Each iteration of BEAST then selects the edge from this

queue with the lowest total estimated effort-to-go and samples a state from its target

region. It then attempts to find a kinodynamically feasible path from the start state

toward that sample. If it succeeds, then the effort estimate of the PRM-edge that

represents the connection between the regions is lowered, and the outgoing edges

of that region are added to the search queue. If the attempt was not successful,

the estimated effort of the associated PRM-edge is increased. The total estimated

effort-to-go values of all regions affected by this change are updated with D* Lite.

In this manner, BEAST effectively considers effort estimates in sampling-based

planning and is shown to find solutions faster than other kinodynamic plan-

ners (Kiesel, 2016; Kiesel et al., 2017) but does not consider solution cost. BEAST

probabilistically complete if it samples a fixed percentage of states uniformly at

random (Kiesel et al., 2017).

Similar to BEAST, EIT* directly aligns its search with the priorities of the

planning problem by calculating and leveraging a problem-specific effort heuristic.

Unlike BEAST, EIT* requires an exact two-point Boundary Value Problem (BVP)

solver for kinodynamic problems but does not require a user-specified abstraction

of the search space and is almost-surely asymptotically optimal.

5.1.2 Graph-search algorithms with effort heuristics

Graph-based searches can accelerate solution times by incorporating estimates of

computational effort to guide their searches towards low-effort solutions. Instead

of approximating computational effort with the number of collision checks, graph-

based searches often approximate it with search distance, i.e., the number of states

that must be expanded to reach the goal.

Effort Informed Trees (EIT*) 105

A∗ε (Pearl and Kim, 1982) is a version of A* with bounded suboptimality that

aims to expand states as close to the goal as possible. It maintains two queues, one

ordered on remaining solution effort and one on total potential solution cost, and

always expands the state with the lowest remaining solution effort that is within the

suboptimality bound. This results in few expanded states, especially when a loose

suboptimality bound is acceptable, but introduces significant computational over-

head and implementation complexity because the two queues have to be synchronized.

Simplified A∗ε (SA∗ε; Hatem and Ruml, 2014) reduces this overhead by replacing the

A* queue with iterative deepening, as in Iterative-Deepening A* (IDA*; Korf, 1985).

EES (Thayer and Ruml, 2010, 2011) builds on A∗ε by additionally considering

an inadmissible cost heuristic to guide the search. This can result in even fewer

expanded states, but increases the computational overhead and complexity because

EES has to maintain three synchronized queues. Simplified EES (SEES; Hatem and

Ruml, 2014) simplifies EES by replacing two of these queues with iterative deepening,

similarly to how SA∗ε simplifies A∗ε, but may expand more states than EES.

AEES (Thayer et al., 2012) is an anytime version of EES that aims to minimize

the time between solution improvements. It orders its search based on admissible

and inadmissible cost heuristics and an inadmissible effort heuristic. AEES starts by

initializing its search queue with the start state. At each iteration, it then aims to

select the state from this queue that leads to the fastest solution-cost improvement.

It does so by prioritizing the state with the lowest effort estimate if it is estimated

to lead to a sufficiently high-quality solution, and otherwise selecting the state that

is estimated to be on the resolution-optimal solution or the state the provides a

lower bound on the suboptimality of the current solution. An edge-queue version of

AEES is used as the forward search in EIT* and described in detail in Section 5.2.4.

Instead of separately maintaining queues ordered on total potential solution cost

and remaining effort estimates, BUGSY (Ruml and Do, 2007; Burns et al., 2013)

is a best-first search algorithm that considers a weighted sum of total potential

Effort Informed Trees (EIT*) 106

solution cost and remaining effort estimates when ordering its search. The user can

specify the ratio of the weights of this sum to reflect the amount of time they are

willing to wait for an improvement of one cost unit, which provides an intuitive

way to directly align the search with the priorities of the user.

Similar to these graph-based searches, EIT* uses estimates of computational

effort to align its search with the priorities of the problem. Unlike these graph-based

searches, EIT* can directly be applied to continuous path planning problems and

includes a general way to calculate problem-specific effort heuristics.

5.2 Algorithm description

EIT* leverages optimization-, environment-, and intent-specific information to align

its search with the priorities of the problem. It approximates the search space with

the same series of increasingly dense, edge-implicit RGGs as AIT*, which are focused

on the relevant region of the search space with informed sampling (Gammell et al.,

2018). Similarly to AIT*, EIT* searches these approximations with an asymmetric

bidirectional search in which both searches continuously inform each other. This

bidirectional search is asymmetric both in purpose and in computational cost.

The reverse search of EIT* is an edge-queue version of A*. Similar to AIT*,

it calculates two cost heuristics and one effort heuristic by combining a priori

edge heuristics between multiple samples into more accurate approximation-specific

heuristics between each sample and the goal. This considers the connectivity

of the current RGG approximation and therefore leverages environment-specific

information. Unlike AIT*, the reverse search detects large obstacles on potential

connections by performing sparse collision detection on the edges. The reverse

search is computationally inexpensive relative to the forward search because it does

not evaluate true edge costs and because sparse collision detection is inexpensive

relative to full collision detection (Sánchez and Latombe, 2003).

Effort Informed Trees (EIT*) 107

The forward search of EIT* is an edge-queue version of AEES that efficiently

finds solutions to the given planning problem by leveraging the accurate, problem-

specific heuristics calculated by the reverse search. If the forward search finds that

the reverse search used an invalid edge to calculate the heuristics, then it causes

the reverse search to update them with this information. The forward search is

computationally expensive, as it evaluates true edge costs and performs full collision

detections on the edges, but aligned with the priorities of the problem by the

accurate heuristics calculated with the reverse search.

Both searches process the exact same increasingly dense, edge-implicit RGG

as AIT*, which is presented in Section 4.2.5. The EIT* subroutines expand,

neighbors, and prune are equivalent to their versions in AIT* and not repeated

in this chapter. Once the resolution-optimal solution is found, EIT* samples more

states and calculates new heuristics for the updated approximation. This process is

repeated and will almost-surely asymptotically find the optimal solution.

5.2.1 Notation

EIT* is described using the same notation as ABIT* and AIT* (Sections 3.2.1

and 4.2.1) with minor extensions. A potentially inadmissible effort heuristic between

two states is denoted by the function ē : X ×X → [0,∞). This heuristic estimates

the computational effort required to find and validate a path between the two

states, e.g., the number of necessary collision detections to validate the path. A

potentially inadmissible effort heuristic between the start and each state is denoted

by the function d̄ : X → [0,∞) and often defined as d̄ (x) := ē (xstart,x). A

potentially inadmissible cost heuristic between two states is denoted by the function

c̄ : X × X → [0,∞). It is assumed that the inadmissible cost heuristic is lower

bounded by the admissible version, i.e.,

∀ xi,xj ∈ X, ĉ (xi,xj) ≤ c̄ (xi,xj) .

Effort Informed Trees (EIT*) 108

Algorithm 15: Effort Informed Trees (EIT*)
1 VF ← xstart; EF ← ∅; VR ← Xgoal; ER ← ∅; VR,closed ← ∅
2 Xsampled ← {xstart} ∪Xgoal

3 ρ← update_sparse_collision_resolution (); εi ←∞
4 QF ← expand (xstart); QR ← expand (Xgoal)

Initialization
(Section 5.2.2)

5 repeat
6 if continue_reverse_search ()

7 (xs,xt)← arg min(xs,xt)∈QR
{
keyEIT∗

R (xs,xt)
}

8 QR
−←− (xs,xt)

9 VR,closed
+←− xs

10 if no_sparse_collisions_detected ((xs,xt) , ρ)
11 h̄ [xt]← min

{
h̄ [xt] , h̄ [xs] + c̄ (xt,xs)

}
12 b̄ [xt]← min

{
b̄ [xt] , b̄ [xs] + ē (xt,xs)

}
13 if ĥ [xt] > ĥ [xs] + ĉ (xt,xs)

14 ĥ [xt]← ĥ [xs] + ĉ (xt,xs)
15 if xt ∈ VR
16 ER

−←− (parentR (xt) ,xt)

17 else
18 VR

+←− xt

19 ER
+←− (xs,xt)

20 QR
+←− expand (xt)

21 else
22 Einvalid

+←− (xs,xt)

Reverse search
(Section 5.2.3)

23 else if continue_forward_search ()
24 (xs,xt)← get_best_forward_edge (QF)

25 QF
−←− (xs,xt)

26 if (xs,xt) ∈ EF
27 QF

+←− expand (xt)

28 else if gF (xs) + ĉ (xs,xt) < gF (xt)
29 if collision_free (xs,xt)

30 if gF (xs) + c (xs,xt) + ĥcon [xt] < ccurrent
31 if gF (xs) + c (xs,xt) < gF (xt)
32 if xt 6∈ VF
33 VF

+←− xt

34 else
35 EF

−←− (parentF (xt) ,xt)

36 EF
+←− (xs,xt)

37 QF
+←− expand (xt)

38 if minxgoal∈Xgoal
{gF (xgoal)} < ccurrent

39 ccurrent ← minxgoal∈Xgoal
{gF (xgoal)}

40 εi ← update_inflation_factor ()

41 else
42 Einvalid

+←− {(xs,xt) , (xt,xs)}
43 if (xs,xt) ∈ ER
44 ρ← update_sparse_collision_resolution ()
45 VR ← Xgoal; ER ← ∅; QR ← expand (Xgoal)

Forward search
(Section 5.2.4)

46 else
47 VR ← Xgoal; VR,closed ← ∅; ER ← ∅
48 prune (Xsampled); Xsampled

+←− sample (m, ccurrent)
49 QF ← expand (xstart); QR ← expand (Xgoal)

Approximation
(Section 4.2.5)

50 until stopped

Effort Informed Trees (EIT*) 109

5.2.2 Initialization

EIT* starts by initializing the forward and reverse search trees with the start

and goal states as their respective roots and the set of sampled states also with

the start and goal states (Alg. 15, lines 1 and 2). It then initializes the sparse

collision detection resolution, sets the inflation factor to infinity, and expands all

outgoing edges of the start and goal states into the forward and reverse queues,

respectively (Alg. 15, lines 3 and 4).

5.2.3 Reverse search

The reverse search of EIT* is an edge-queue version of A* with adaptive sparse

collision detection. It calculates an admissible cost heuristic, an inadmissible cost

heuristic, and an inadmissible effort heuristic for each RGG approximation. The

calculated admissible cost heuristic is a lower bound on the optimal cost of a path

from a state to the goal and is denoted by the label ĥ [·]. The calculated inadmissible

cost heuristic approximates the cost of an optimal path from a state to the goal

and is denoted by the label h̄ [·]. This inadmissible cost heuristic is often more

accurate than the admissible version because it can contain additional information

that may overestimate the true cost. The calculated inadmissible effort heuristic

approximates the computational effort required to find and validate a path from a

state to the goal and is denoted by the label b̄ [·]. An example of such a heuristic

is the number of collision checks required to validate a path, which is available and

informative for all planning problems as it does not depend on the optimization

objective but instead only on path length and collision detection resolution.

These heuristics are computed as in AIT* with a reverse search that combines

a priori heuristics between multiple samples into more accurate heuristics between

each sample and the goal. The calculated admissible cost heuristic, ĥ [·], is

computed by combining a priori admissible cost heuristics, ĉ (· , ·), with a reverse

Effort Informed Trees (EIT*) 110

search that preserves the admissibility of the heuristic between each state and

the goal. The calculated inadmissible cost and effort heuristics, h̄ [·] and b̄ [·],

are similarly computed with the inadmissible a priori cost and effort heuristics,

c̄ (· , ·) and ē (· , ·), respectively. All three heuristics always have a value of zero

for all goal states. When calculating the heuristics with the reverse search, the

edge heuristics are evaluated from the target to the source of the edge to ensure

that the calculated heuristics are valid for the forward search even when the these

heuristics are asymmetric in their arguments, as in AIT*.

The adaptive sparse collision detection is a computationally inexpensive way to

find invalid edges in the heuristic calculation during the reverse search. Collision

detection is considered a computationally expensive operation in sampling-based

planning (Hauser, 2015; Kleinbort et al., 2016, 2020) but this is due to the com-

putational cost of evaluating valid edges (Sánchez and Latombe, 2003). Detecting

invalid edges with sparse collision detection is less computationally expensive and

was found to be of similar computational cost to other operations in the reverse

search when solving the problems presented in this thesis.

The edge queue of the reverse search in EIT* is denoted by QR and lexicograph-

ically ordered first by the total potential solution cost of a path through an edge

and then by the total potential computational effort required to validate this path,

keyEIT∗

R (xs,xt) :=
(
ĥ [xs] + ĉ (xt,xs) + ĝ (xt) ,

b̄ [xs] + ē (xt,xs) + d̄ (xt)
)
,

where ĝ (xt) and d̄ (xt) denote admissible a priori cost and inadmissible a priori

effort heuristics for a path from the target state, xt, to the start. The first part of

the key ensures the admissibility of the calculated cost heuristic and the second

part of the key breaks ties in favor of lower calculated effort, which is important if

informative admissible cost heuristics are not available, e.g., when the trivial cost

heuristic ∀ x1,x2 ∈ X, ĉ (x1,x2) ≡ ĝ (x1) ≡ 0 is the only admissible option.

Effort Informed Trees (EIT*) 111

Algorithm 16: EIT*: continue_reverse_search ()

1 if QF = ∅ or QR = ∅
2 return false

3 if ∀ (xs,xt) ∈ QF , xt ∈ VR,closed

4 return false

5 if εi =∞ and ∃ (xs,xt) ∈ QF , xt ∈ VR
6 return false

7 (xs,F ,xt,F)← get_best_forward_edge (QF)
8 (xs,R,xt,R)← get_best_reverse_edge (QR)

9 if gF (xs,F) + ĉ (xs,F ,xt,F) + ĥ [xt,F] ≤ ĥ [xs,R] + ĉ (xt,R,xs,R) + ĝ (xt,R)
10 and xt,F ∈ VR,closed

11 return false

12 return true

Each iteration of the reverse search first removes the edge with the lowest

key-value, keyEIT∗

R , from the reverse queue, adds its source state to the set of

closed vertices, and checks a number of evenly distributed states along this edge for

collision (Alg. 15, lines 7–10). The number of collision checks, ρ, is adapted during

the search with a user-specified policy. If a collision is found, then the edge is added

to the set of invalid edges (Alg. 15, line 22), otherwise it is used to improve the

inadmissible cost- and effort heuristics, if possible (Alg. 15, lines 11 and 12).

It is then checked whether the edge can improve the calculated admissible cost

heuristic of the target state (Alg. 15, line 13). If it can, then the heuristic is updated

and the target state is either rewired or added to the reverse search tree (Alg. 15,

lines 14–19). The reverse search iteration is completed by expanding the outgoing

edges of the target state into the reverse queue (Alg. 15, line 20 and Alg. 12).

5.2.3.1 Termination and suspension conditions

The reverse search calculates the admissible cost and effort heuristics in a just-in-

time manner and is terminated or suspended under multiple conditions. The reverse

search is terminated if the reverse queue is empty (Alg. 16, lines 1 and 2). The

reverse search is also terminated if the forward queue is empty (Alg. 16, lines 1 and 2),

Effort Informed Trees (EIT*) 112

because the reverse search cannot fill the forward queue and an empty forward queue

terminates the forward search (Alg. 15, lines 23 and 47, and Alg. 18, lines 1 and 2).

The reverse search is suspended if all edges in the forward queue have closed

target states in the reverse search (Alg. 16, lines 3 and 4). The reverse search is also

suspended if the forward search has an infinite inflation factor and any target state

in the forward queue is in the reverse search tree (Alg. 16, lines 5 and 6). Finally, the

reverse search is suspended if the total potential solution cost of the best edge in the

reverse queue is greater than or equal to that of the best edge in the forward queue

and the best edge in the forward queue has a closed target state (Alg. 16, lines 7–11).

The last suspension condition allows the reverse search to be suspended even

if the inflation factor is not infinite and some edges in the forward queue have

target states whose calculated heuristics are not guaranteed to be admissible. The

forward search is still ordered according to an admissible cost heuristic because

the suspension condition guarantees that the next best edge in the forward queue

is known at each iteration (Section 5.3.1).

5.2.4 Forward search

The forward search of EIT* is an edge-queue version of AEES which leverages

the cost and effort heuristics calculated by the reverse search. It leverages these

heuristics in an anytime manner, which results in effective searches with fast initial

solution times regardless of the optimization objective.

The forward search of EIT* searches the same RGG approximation multiple

times with successively tighter suboptimality bounds. It initially prioritizes quickly

finding any solution over efficiently finding the resolution-optimum, which improves

anytime performance. Once an initial solution is found, EIT* uses both the

calculated admissible and inadmissible cost heuristics to improve the tree until it

can guarantee that it has found the resolution-optimal solution.

Effort Informed Trees (EIT*) 113

The forward search of EIT* delays expensive edge cost evaluations by using an

edge queue similar to LWA*. This queue is ordered by separately considering a lower

bound on the optimal solution cost (Section 5.2.4.1), an estimate of the optimal

solution cost (Section 5.2.4.2), and an estimate of the minimum remaining effort to

validate a solution within the current suboptimality bound (Section 5.2.4.3). Each of

these values is respectively informed by the admissible cost heuristic, the inadmissible

cost heuristic, and the inadmissible effort heuristic calculated by the reverse search.

5.2.4.1 Optimal cost bound

A lower bound on the optimal solution cost in the current RGG is computed as

min
(xs,xt)∈QF

ŝ (xs,xt) ,

where the function ŝ : Xsampled ×Xsampled → [0,∞) estimates the cost of a solution

that is constrained to go through a specific edge, (xs,xt). This estimate is defined as

ŝ (xs,xt) := gF (xs) + ĉ (xs,xt) + ĥ [xt] ,

where gF (xs) is the cost-to-come of the edge source, ĉ (xs,xt) is the admissible cost

heuristic of the edge, and ĥ [xt] is the admissible cost heuristic of the edge target,

as calculated by the reverse search. At least one edge in the forward queue has an

optimally connected source state (Lemma 1; Hart et al., 1968). The ŝ-value of that

edge therefore provides a lower bound on the optimal solution cost in the current

RGG approximation, if the heuristics ĉ and ĥ are admissible. The minimum ŝ-value

in the forward queue is therefore also a lower bound on the optimal solution cost.

The edge that corresponds to this lower bound is denoted as

(
xŝs ,x

ŝ
t

)
:= arg min

(xs,xt)∈QF
ŝ (xs,xt) .

Effort Informed Trees (EIT*) 114

5.2.4.2 Optimal cost estimate

An inadmissible, but potentially more accurate, estimate of the optimal solution

cost in the current RGG approximation is computed as

min
(xs,xt)∈QF

s̄ (xs,xt) ,

where s̄ : Xsampled ×Xsampled → [0,∞) is also an estimate of the cost of a solution

that is constrained to go through an edge but calculated with inadmissible cost

heuristics. This estimate is defined as

s̄ (xs,xt) := gF (xs) + c̄ (xs,xt) + h̄ [xt] ,

where gF (xs) is the cost to come to the edge source, c̄ (xs,xt) is the inadmissible cost

heuristic of the edge, and h̄ [xt] is the inadmissible cost heuristic of the edge target,

as calculated by the reverse search. This estimate is often more accurate than the

admissible lower bound because it can include information that may overestimate

the true cost. The edge with the best inadmissible solution cost is denoted as

(xs̄s ,x
s̄
t) := arg min

(xs,xt)∈QF
s̄ (xs,xt) .

5.2.4.3 Minimum effort estimate

An estimate of the minimum remaining effort to validate a solution within the

suboptimality bound is computed as

min
(xs,xt)∈Q

εis̄

F

r̄ (xs,xt) ,

Effort Informed Trees (EIT*) 115

where r̄ : Xsampled ×Xsampled → [0,∞) estimates the remaining effort to validate a

solution that goes through an edge. This estimate is defined as

r̄ (xs,xt) := ē (xs,xt) + b̄ [xt] ,

where ē (xs,xt) is the heuristic effort to validate the edge and b̄ [xt] is the heuristic

effort to validate a path from the target of the edge to the goal, as calculated by

the reverse search. The minimum is taken only over the edges in the queue that are

estimated to lead to a solution within the current suboptimality factor, εi,

Qεis̄F := {(xs,xt) ∈ QF | s̄ (xs,xt) ≤ εis̄ (xs̄s ,x
s̄
t)}.

The edge that results in this estimate of the minimum remaining effort required

to find a solution within the current suboptimality bound is denoted as

(xr̄s ,x
r̄
t) := arg min

(xs,xt)∈Q
εis̄

F

r̄ (xs,xt) .

5.2.4.4 Edge processing

Each iteration of the forward search aims to process the edge in the queue that

leads to the fastest solution-cost improvement within the current suboptimality

bound. This edge is determined by prioritizing the edge with the lowest effort

estimate, (xr̄s ,x
r̄
t), if it satisfies the suboptimality bound, and otherwise selecting

the edge with the lowest estimated cost, (xs̄s ,x
s̄
t), if it satisfies the suboptimality

bound. If neither of these edges satisfies the bound, then the edge that provides

the current suboptimality bound,
(
xŝs ,x

ŝ
t

)
, is selected.

The detailed selection steps are:

1. If the edge with the minimum remaining effort required to validate a solution,

(xr̄s ,x
r̄
t), is estimated to lead to a solution within the current suboptimality

Effort Informed Trees (EIT*) 116

Algorithm 17: EIT*: get_best_forward_edge (QF)

1 (xr̄s ,x
r̄
t)← arg min

(xs,xt)∈Q
εis̄

F

{
ē (xs,xt) + b̄ [xt]

}
2 (xs̄s ,x

s̄
t)← arg min(xs,xt)∈QF

{
gF (xs) + c̄ (xs,xt) + h̄ [xt]

}
3
(
xŝs ,x

ŝ
t

)
← arg min(xs,xt)∈QF

{
gF (xs) + ĉ (xs,xt) + ĥ [xt]

}
4 if s̄ (xr̄s ,x

r̄
t) ≤ εiŝ

(
xŝs ,x

ŝ
t

)
5 return (xr̄s ,x

r̄
t)

6 else if s̄ (xs̄s ,x
s̄
t) ≤ εiŝ

(
xŝs ,x

ŝ
t

)
7 return (xs̄s ,x

s̄
t)

8 else
9 return

(
xŝs ,x

ŝ
t

)

bound,

s̄ (xr̄s ,x
r̄
t) ≤ εiŝ

(
xŝs ,x

ŝ
t

)
,

then it is selected (Alg. 17, lines 4 and 5). This edge is estimated to improve

the current solution with the least amount of computational effort.

2. If the edge that the inadmissible heuristic estimates to be on a resolution-

optimal path, (xs̄s ,x
s̄
t), is estimated to lead to a solution within the current

suboptimality bound,

s̄ (xs̄s ,x
s̄
t) ≤ εiŝ

(
xŝs ,x

ŝ
t

)
,

then it is selected (Alg. 17, lines 6 and 7). This edge is preferred over the

edge that the admissible cost heuristic estimates to be on a resolution-optimal

path,
(
xŝs ,x

ŝ
t

)
, because the inadmissible cost heuristic may contain more

optimization-specific information than its admissible counterpart, including

information that may overestimate the solution cost.

3. Otherwise the edge that provides the lower bound on the optimal solution

cost in the current approximation,
(
xŝs ,x

ŝ
t

)
, is selected. This raises the lower

bound on the optimal solution cost in the current RGG approximation and

Effort Informed Trees (EIT*) 117

increases the number of candidates available to steps 1 and 2 in the next

iteration (Alg. 17, lines 8 and 9).

The forward search of EIT* then proceeds similarly to that of AIT*, but accounts

for the adaptive collision detection in the reverse search. If the selected edge is

in the forward search tree, then its target state is expanded and the forward

search iteration is complete (Alg. 15, lines 26 and 27). If the selected edge is not

part of the forward search tree but can possibly improve it, then it is checked

for collisions (Alg. 15, lines 28 and 29).

If collisions are detected, then the edge is added to the set of invalid edges (Alg. 15,

line 42) and if it is in the reverse search tree, then the heuristics are updated by

restarting the reverse search with an updated sparse collision detection resolu-

tion (Alg. 15, lines 43–45). The update policy of the sparse collision detection

resolution is a user-specified parameter. The update policy used in the evaluation

of EIT* is presented in Section 5.4.

If no collisions are detected, then the true cost of the edge is evaluated to check

whether it actually improves the current solution and forward search tree (Alg. 15,

lines 30 and 31). If it does, then its target state is added to the tree if it is not already

in it (Alg. 15, lines 30–33). If the target state is already in the tree, then the edge

causes a rewiring and the edge from the old parent is removed from the tree (Alg. 15,

lines 34 and 35). The new edge is then added to the tree and its target state is

expanded into the forward queue (Alg. 15, lines 36 and 37). If the edge improves the

current solution, then the solution cost and the inflation factor are updated (Alg. 15,

lines 39 and 40). The inflation factor update policy is a user-tuned parameter. The

update policy used in the evaluation of EIT* is presented in Section 5.4.

Effort Informed Trees (EIT*) 118

Algorithm 18: EIT*: continue_forward_search ()

1 if QF = ∅
2 return false

3 if ∀ (xs,xt) ∈ QF , ĥ [xt] =∞
4 return false

5 if ccurrent < min(xs,xt)

{
gF (xs) + ĉ (xs,xt) + ĥ [xt]

}
6 return false

7 return true

5.2.4.5 Termination conditions

The forward search can be terminated under the same conditions as the for-

ward search of AIT*. The forward search is terminated if the forward queue

is empty (Alg. 18, lines 1 and 2). The forward search is also terminated if no edge

in the forward queue has a target in the reverse search tree (Alg. 18, lines 3 and 4)

because then the start and goal are not in the same component of the current RGG

approximation and it is impossible for EIT* to find a solution without improving

its approximation. The forward search is also terminated if no edge in the forward

queue can possibly improve the current solution in the current RGG approxima-

tion (Alg. 18, lines 5 and 6) because then EIT* has found the resolution-optimal

solution and can only improve it by improving its approximation first.

If the forward search is terminated, then EIT* clears the set of closed vertices

and the reverse search tree, improves the approximation, and resets the search

queues (Alg. 15, lines 47–49). The next iteration of the main loop in EIT* (Alg. 15,

lines 5–50) will then restart the reverse search. This process is repeated for as long

as computational time allows or until a suitable solution is found. This results

in progressively more accurate heuristics for increasingly effective searches of ever

more refined approximations and will almost-surely asymptotically converge to the

optimal solution in the limit of infinite computation time (Section 5.3).

Effort Informed Trees (EIT*) 119

5.3 Analysis

As in the analysis of ABIT* and AIT*, this analysis builds on the fact that a

sampling-based path planning algorithm is almost-surely asymptotically optimal

if its approximation almost-surely contains an asymptotically optimal solution

and the graph-search algorithm is resolution-optimal. The almost-sure asymptotic

optimality of EIT* follows again from proven properties of its approximation and

graph-search algorithms.

The approximation constructed by EIT* almost-surely contains an asymptoti-

cally optimal solution because it contains all the edges in PRM* for any set of samples

and PRM* is almost-surely asymptotically optimal (Karaman and Frazzoli, 2011).

The forward search of EIT* is resolution-optimal because AEES is a resolution-

optimal algorithm if provided with an admissible cost heuristic and an inflation

factor of one (Thayer and Ruml, 2011). Section 5.3.1 shows that the forward search

processes edges as if all edge targets in its queue had an admissible cost heuristic

if the reverse search is suspended as in EIT* and the provided admissible cost

heuristic is consistent and symmetric in its arguments.

The reverse search of EIT* with sparse collision detection results in an admissible

cost heuristic because full collision detection cannot decrease path cost and A*

is a resolution-optimal graph-search algorithm when provided with an admissible

cost heuristic (Hart et al., 1968). EIT* is therefore almost-surely asymptotically

optimal if the provided admissible cost heuristic is consistent and symmetric in

its arguments and the user-specified inflation factor update policy results in an

inflation factor of one in the limit of infinite samples.

5.3.1 Reverse search suspension condition

This section shows that it is unnecessary to continue the reverse search of EIT*

if at least one of its three reverse search suspension conditions is satisfied. EIT*

Effort Informed Trees (EIT*) 120

suspends the reverse search if all edges in the forward queue have closed target

states (Alg. 16, lines 3 and 4), because then all of these states have admissible

cost heuristics (Lemma 2; Hart et al., 1968).

EIT* also suspends the reverse search if the forward search has an infinite

inflation factor and any target state in the forward queue is in the reverse search

tree (Alg. 16, lines 5 and 6), because an infinite inflation factor results in an infinite

suboptimality bound and therefore no guarantees about the solution quality can be

made regardless of whether the calculated cost heuristic is admissible or not.

Finally, EIT* also suspends the reverse search if the total potential solution

cost of the best edge in the reverse queue is greater than or equal to that of the

best edge in the forward queue and the best edge in the forward queue has a closed

target state (Alg. 16, lines 7–11), because this guarantees that the target state of

the best edge in the forward queue is optimally connected in the reverse tree and

no edge in the forward queue with a suboptimally connected target state would be

better than this edge if its target state were optimally connected (Theorem 3).

Theorem 3 (EIT* reverse search stopping condition). Let the cost-to-come heuristic

be defined by the edge cost heuristic, ĝ (x) := ĉ (xstart,x), and let this heuristic be

consistent and symmetric in its arguments. If the heuristic total potential solution

cost of the best edge in the reverse queue is greater than or equal to the total potential

solution cost of the best edge in the forward queue,

min
(xRs ,xRt)∈QR

{
ĥ
[
xRs
]

+ ĉ
(
xRt ,x

R
s

)
+ ĝ

(
xRt
)}

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥ

[
xFt
]}
,

and the target state of the best edge in the forward queue is closed, then this target

has an admissible calculated cost heuristic and the best edge in the forward queue

will not be changed by continuing the reverse search.

Effort Informed Trees (EIT*) 121

Proof. Proving the theorem proceeds similarly to the proof of Theorem 2 for AIT*.

It requires showing that if the reverse search is suspended, then the target state of

the best edge in the forward queue is optimally connected in the reverse tree and

no edge in the forward queue with a suboptimally connected target would be better

than the best edge if the target were optimally connected.

The suspension condition results in an optimally connected target state of the

best edge in the forward queue because of a proven property of A* when provided

with a consistent heuristic. The suspension condition explicitly requires the target of

this edge to be closed in the reverse search and a closed state is optimally connected

in an A* search with a consistent heuristic (Lemma 2; Hart et al., 1968).

It is now shown that no edge in the forward queue with a suboptimally connected

target would be better than the best edge in the forward queue if its target were

optimally connected. First, a lower bound is derived on the optimal calculated cost

heuristic for any edge target in the forward queue that is suboptimally connected.

This lower bound is then used to prove that the suspension condition of the theorem

ensures that no edge in the forward queue with suboptimally connected target would

have the lowest total potential solution cost if its target were optimally connected.

Let (xs,xt) be any edge in the forward queue with a suboptimally connected

target, xt. Let its unknown optimally connected cost in the reverse tree be ĥ∗ [xt].

The state xt cannot be closed in the reverse search because it has an inadmissible

calculated cost heuristic (Lemma 2; Hart et al., 1968). Every outgoing edge, (xt,xn),

from that state to a neighboring state, xn, must therefore have a potential reverse

solution cost greater than or equal to the minimum potential reverse solution cost

in the reverse queue,

min
xn∈neighbors(xt)

{
ĥ∗ [xt] + ĉ (xn,xt) + ĝ (xn)

}
≥ min

(xRs ,xRt)∈QR

{
ĥ
[
xRs
]

+ ĉ
(
xRt ,x

R
s

)
+ ĝ

(
xRt
)}
, (5.1)

Effort Informed Trees (EIT*) 122

because otherwise the state xt would be closed in the reverse search.

Let the state x∗n be the neighbor of the state xt, such that the edge (xt,x
∗
n) has

the lowest potential reverse solution cost of all neighbors of xt,

x∗n := arg min
xn∈neighbors(xt)

{
ĥ∗ [xt] + ĉ (xn,xt) + ĝ (xn)

}
. (5.2)

Equation 5.1 can then be rewritten as a lower bound on the optimal cost of the

target state,

ĥ∗ [xt] ≥ min
(xRs ,xRt)∈QR

{
ĥ
[
xRs
]

+ ĉ
(
xRt ,x

R
s

)
+ ĝ

(
xRt
)}
− ĉ (x∗n,xt)− ĝ (x∗n) . (5.3)

This lower bound is now used to prove that the suspension condition of the

theorem ensures that the edge (xs,xt) would not have the lowest total potential

solution cost in the forward queue if its target were optimally connected.

The edge source, xs, is a neighbor of the edge target, xt, and therefore its cost

is greater than or equal to the cost through the best neighbor, x∗n,

ĝ (xs) + ĉ (xt,xs) ≥ ĝ (x∗n) + ĉ (xt,x
∗
n) .

The current cost-to-come to the source is greater than or equal to the heuristic cost-

to-come to the source, gF (xs) ≥ ĝ (xs), because the heuristic, ĝ (·), is admissible,

and therefore it is also true that

gF (xs) + ĉ (xt,xs) ≥ ĝ (x∗n) + ĉ (xt,x
∗
n) . (5.4)

Theorem 3 states that the reverse search is suspended if the total potential

solution cost of the best edge in the reverse queue is greater than or equal to that

Effort Informed Trees (EIT*) 123

of the best edge in the forward queue,

min
(xRs ,xRt)∈QR

{
ĥ
[
xRs
]

+ ĉ
(
xRt ,x

R
s

)
+ ĝ

(
xRt
)}

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥ

[
xFt
]}
. (5.5)

If this condition is satisfied, then it must also be true that

gF (xs) + ĉ (xt,xs)− (ĝ (x∗n) + ĉ (xt,x
∗
n))︸ ︷︷ ︸

nonnegative

+ min
(xRs ,xRt)∈QR

{
ĥ
[
xRs
]

+ ĉ
(
xRs ,x

R
t

)
+ ĝ

(
xRt
)}

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥ

[
xFt
]}
, (5.6)

where the underbraced sum is nonnegative because of Equation 5.4. Using the sym-

metry of the edge cost heuristic, ĉ (xt,x
∗
n) ≡ ĉ (x∗n,xt), and rearranging Equation 5.6

yields

gF (xs) + ĉ (xs,xt)

+ min
(xRs ,xRt)∈QR

{
ĥ
[
xRs
]

+ ĉ
(
xRt ,x

R
s

)
+ ĝ

(
xRt
)}
− ĉ (x∗n,xt)− ĝ (x∗n)︸ ︷︷ ︸

lower bound on ĥ∗[xt]

≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥ

[
xFt
]}
, (5.7)

where the underbraced term is the lower bound on the optimal connection cost,

ĥ∗ [xt], given in Equation 5.3. Substituting for the underbraced term yields

gF (xs) + ĉ (xs,xt) + ĥ∗ [xt] ≥ min
(xFs ,xFt)∈QF

{
gF
(
xFs
)

+ ĉ
(
xFs ,x

F
t

)
+ ĥ

[
xFt
]}
,

which proves that the total potential solution cost of the edge (xs,xt) would be

Effort Informed Trees (EIT*) 124

greater than or equal to the minimum total potential solution cost of any edge in the

forward queue even if the target state, xt of the edge were optimally connected. This

proves that continuing the reverse search if the suspension condition of Theorem 3

is satisfied will not change the best edge in the forward queue and is therefore

unnecessary.

5.4 Evaluation

Path planning algorithms are often only evaluated when minimizing path length.

This is a common optimization objective for real-world applications, but it is also a

special case that has a computationally inexpensive admissible cost heuristic (the

Euclidean distance) and high correlation between the cost of a path and the

computational effort required to validate it. These properties are exploited by many

algorithms, including ABIT* and AIT*, and such algorithms often perform less

well when optimizing objectives that lack these properties.

An example of such an optimization objective is obstacle clearance. This is an

important objective for path planning because it often results in safer paths than

minimizing path length and is commonly studied (Chen and Hwang, 1998; Geraerts

and Overmars, 2007; Bekris and Kavraki, 2008; Wein et al., 2008; Chen et al., 2013;

Agarwal et al., 2018; Kim et al., 2018; Heiden et al., 2021; Sakcak and LaValle, 2021).

The benefits of directly aligning the search of a problem with its priorities as in

EIT* is shown on most of the problems presented in Sections 3.4 and 4.4 for the path

length and obstacle clearance objectives. Path length was optimized by minimizing

path length in the search space. Obstacle clearance was optimized by minimizing

the reciprocal of clearance in work space integrated over the length of the path, l,

c (σ) :=

∫ l

0

1

δ (σ (s/l))
ds,

Effort Informed Trees (EIT*) 125

where δ : X → [10−6,∞) is the clearance of a state (i.e., the distance to its nearest

obstacle) limited to be no smaller than 10−6,

δ (x) := max
{

clearance(x), 10−6
}
.

The lower limit on the clearance ensures numerical stability and that the cost of a

path is bounded by a multiple of its total variation as assumed in Section 2.4.1.2.

The admissible cost heuristics used by the informed planners were the Euclidean

distance for path length and the trivial zero-heuristic for obstacle clearance. The

possibly inadmissible edge cost heuristic used by EIT* was again the Euclidean

distance for path length and the reciprocal of the average clearance of the two end

states times their distance in search space, d, for obstacle clearance,

c̄ (xs,xt) :=
2d

δ (xs) + δ (xt)
.

The effort heuristic used by EIT* was the number of collision checks required to

validate a straight-line path for both objectives. It was computed by dividing the

Euclidean distance between two states by the collision detection resolution.

The inflation factor update policy in EIT* was configured to have an infinite infla-

tion factor until the initial solution is found and then switch to a unity inflation factor.

This results in fast initial solutions and efficient subsequent searches to improve them.

The sparse collision detection resolution update policy in EIT* was configured

to initially search each batch with a single collision check per edge. Whenever

the forward search detected a collision on an edge used in the reverse search tree,

then the collision detection resolution was doubled, unless doubling it would make

it denser than the full collision detection resolution specified by the problem, in

which case it was set to that resolution. These policies could be tuned to each

problem separately, but were kept constant in this thesis to show that EIT* can

perform well without tuning them.

Effort Informed Trees (EIT*) 126

5.4.1 Abstract problems

EIT* was tested against the other planners on the same abstract problems in R2, R8,

and R16 as ABIT* (Section 3.4.1, Figure 3.3), but this time when minimizing path

length and optimizing obstacle clearance. While admissible cost heuristics exist for

these abstract problems with clearance in search space (Strub and Gammell, 2021a),

such heuristics often do not exist in real-world problems optimizing clearance in

work space. The trivial admissible cost heuristic was therefore also used for the

clearance objective in these abstract problems.

When minimizing path length, this obstacle configuration shows how fast EIT*

can find the hard-to-find optimal homotopy class of the problem. When opti-

mizing obstacle clearance, it shows the benefits of considering computational

effort in addition to solution cost by decreasing initial solution times by up to

an order of magnitude.

Figures 5.2, 5.3, and 5.4 show the performances of all planners on all versions of

the problem for both objectives. When minimizing path length, EIT* is the only

tested planner that is among the best-performing planners on all versions in terms

of median initial solution times as well as convergence and success rates. When

optimizing obstacle clearance, EIT* finds initial solutions and reaches 100% success

up to an order of magnitude faster than the second best asymptotically optimal

planner and is among the planners with the best convergence rates.

The only planner that finds initial solutions as fast as EIT* when optimizing

obstacle clearance is RRT-Connect, which is not an anytime planner and has an

inherent computational advantage because it does not evaluate solution cost. This

advantage is amplified for this optimization objective, because evaluating obstacle

clearance is at least as computationally expensive as collision detection.

Effort Informed Trees (EIT*) 127

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100
0.5

1

1.5

Computation time [s]

C
os

t

(a) Minimizing path length

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100

10

20

30

40

Computation time [s]

C
os

t

(b) Optimizing obstacle clearance

RRT-Connect Informed RRT* Lazy PRM* FMT*
BIT* ABIT* AIT* EIT*

Figure 5.2: The planner performances on the wall gap experiment in R2 described in
Section 5.4.1 (Figure 3.3). The results show that EIT* performs as well as the best
performing other planner (ABIT*) in terms of success and convergence rates and median
initial solution time and cost when minimizing path length (a). EIT* outperforms all
other tested asymptotically optimal planners in terms of success and convergence rates
and median initial solution times when optimizing obstacle clearance (b). The only tested
planner that finds initial solutions faster than EIT* is RRT-Connect, which is not an
asymptotically optimal planner and has an inherent computational advantage because it
does not evaluate solution cost.

Effort Informed Trees (EIT*) 128

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100
1

2

3

4

Computation time [s]

C
os

t

(a) Minimizing path length

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100

20

40

60

Computation time [s]

C
os

t

(b) Optimizing obstacle clearance

RRT-Connect Informed RRT* Lazy PRM* FMT*
BIT* ABIT* AIT* EIT*

Figure 5.3: The planner performances on the wall gap experiment in R8 described in
Section 5.4.1. The results show that EIT* outperforms all other tested asymptotically
optimal planners for both objectives in terms of success rates, median initial solution times,
and median solution-quality over time (a, b). The only tested planner that finds initial
solutions as fast as EIT* when optimizing obstacle clearance is RRT-Connect, which is not
an asymptotically optimal planner and has an inherent computational advantage because
it does not evaluate solution cost.

Effort Informed Trees (EIT*) 129

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100 101

2

4

6

Computation time [s]

C
os

t

(a) Minimizing path length

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100 101
0

50

100

150

200

Computation time [s]

C
os

t

(b) Optimizing obstacle clearance

RRT-Connect Informed RRT* Lazy PRM* FMT*
BIT* ABIT* AIT* EIT*

Figure 5.4: The planner performances on the wall gap experiment in R16 described
in Section 5.4.1. The results show that EIT* is among the best-performing planners in
terms of initial solution times and success rates when minimizing path length (a). EIT*
outperforms all other tested asymptotically optimal planners in terms of success rates,
median initial solution times, and median solution quality over time when optimizing
obstacle clearance (b). The only planner that finds initial solutions as fast as EIT* when
optimizing obstacle clearance is RRT-Connect, which is not an asymptotically optimal
planner and has an inherent computational advantage because it does not evaluate solution
cost.

Effort Informed Trees (EIT*) 130

RRT-C. Inf. RRT* FMT* Lazy PRM* BIT* ABIT* AIT* EIT*

198 (99%) 179 (89.5%) 186 (93%) 180 (90%) 188 (94%) 186 (93%) 164 (82%) 190 (95%)

Table 5.1: The numbers (and percentages) of the 200 Reeds-Shepp car problem instances
on which the tested planners achieved a success rate of at least 50%. EIT* is the most
reliable asymptotically optimal planner. The only tested planner that solved significantly
more instances is RRT-Connect, which is not an anytime algorithm.

5.4.2 Reeds-Shepp car problems

EIT* was tested on the same 200 Reeds-Shepp car problem instances as ABIT*

and AIT* when minimizing path length. These problems show again that EIT* can

outperform all other tested planners on some problem instances, but is outperformed

by some of the same planners on other problem instances.

The best and worst performances of EIT* were again selected in terms of its

median initial solution time relative to the fastest median initial solution time of

the other tested planners, limited to the problem instances where EIT* achieved

at least 50% success rate (Table 5.1). Figure 5.5 shows the results on the problem

instances that resulted in the best and worst performances of EIT*.

In the best case, EIT* outperforms all other tested planners in terms of median

initial solution times and success and convergence rates. In this instance, EIT*

finds initial solutions significantly faster than even RRT-Connect, which is not an

anytime algorithm and has an inherent computational advantage because it does

not evaluate solution cost (Figure 5.5a).

In the worst case, EIT* has a slower median initial solution time than all

other tested planners, except Lazy PRM* and AIT*. RRT-Connect finds initial

solutions almost two orders of magnitude faster than EIT* in this instance, but

is still not an anytime algorithm and cannot improve its solution quality in the

available computation time (Figure 5.5b).

Effort Informed Trees (EIT*) 131

0

25

50

75

100

Su
cc

es
s

[%
]

10−1 100
1

1.5

2

2.5

3

Computation time [s]

C
os

t

(a) Best relative performance of EIT*

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100

1.5

2

2.5

Computation time [s]

C
os

t

(b) Worst relative performance of EIT*

RRT-Connect Informed RRT* FMT* Lazy PRM*
BIT* ABIT* AIT* EIT*

Figure 5.5: The planner performances on the Reeds-Shepp car problem that resulted in
the best (a) and worst (b) performances of EIT* relative to the other tested planners (Sec-
tion 5.4.2). The results show that EIT* outperforms all other tested planners on some
instances (a) but is outperformed by some of the same planners on others (b). On the
best instance for EIT*, it outperforms the other tested planners in terms of median initial
solution times, as well as success and convergence rate (a). On the worst instance for
EIT*, it performs as well as Lazy PRM* and better than AIT* but is outperformed by all
other tested planners in terms of median initial solution times and success and convergence
rates (b).

Effort Informed Trees (EIT*) 132

(a) Start (b) Start side view (c) Start front view (d) Start top view

(e) Goal (f) Goal side view (g) Goal front view (h) Goal top view

Figure 5.6: Illustrations of the manipulator arm problem (Section 5.4.3). The top row
shows the start configuration of the arms in position to pick up two objects on the bottom
shelf (a–d). The bottom row shows the goal configuration of the arms in position to place
these objects on the top shelf (e–h).

5.4.3 Manipulator arm problems

EIT* was also tested on the single-arm manipulator problem of Section 4.4.2 (Fig-

ure 4.3), but this time when minimizing path length and obstacle clearance. EIT*

was additionally tested on a dual-arm manipulator problem with the same objectives.

The dual-arm manipulator problem required the planners to find a path for two

Barrett WAMs with a total of 14 degrees of freedom and had a time limit of 300

seconds per attempt. This problem simulates the movement of the two arms to pick

up two objects on the bottom shelf and place them on the top shelf (Figure 5.6).

The problems were simulated in OpenRAVE, which was configured to use OBB

trees for collision detection as in Section 4.4.2 and additionally used Rectangle

Swept Sphere (RSS; Larsen et al., 2000) volumes for efficient clearance computation.

Obstacle clearance is a common optimization objective for manipulator problems,

as it often result in safer paths than path length. These problems demonstrate

Effort Informed Trees (EIT*) 133

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100 101 102
0

10

20

Computation time [s]

C
os

t

(a) Minimizing path length

0

25

50

75

100

Su
cc

es
s

[%
]

10−2 10−1 100 101 102

5,000

10,000

15,000

20,000

Computation time [s]

C
os

t

(b) Optimizing obstacle clearance

RRT-Connect Informed RRT* Lazy PRM* FMT*
BIT* ABIT* AIT* EIT*

Figure 5.7: The planner performances on the single-arm manipulator problem described
in Section 4.4.2 (Figure 4.3). The results show that when minimizing path length, EIT* is
competitive in terms of success and convergence rates but does not find initial solutions as
fast as Lazy PRM*, which converges more slowly than EIT* and other planners (a). When
optimizing obstacle clearance, EIT* outperforms all other tested asymptotically optimal
planners in terms of success rate and initial solutions, but converges slower than BIT* and
ABIT* (b). The only planner that finds initial solutions faster than EIT* when optimizing
obstacle clearance is again RRT-Connect, which is not an asymptotically optimal planner
and has an inherent computational advantage because it does not evaluate solution cost.

Effort Informed Trees (EIT*) 134

0

25

50

75

100

Su
cc

es
s

[%
]

100 101 102

20

40

Computation time [s]

C
os

t

(a) Minimizing path length

0

25

50

75

100

Su
cc

es
s

[%
]

100 101 102

1,000

2,000

3,000

Computation time [s]

C
os

t

(b) Optimizing obstacle clearance

RRT-Connect Informed RRT* Lazy PRM* FMT*
BIT* ABIT* AIT* EIT*

Figure 5.8: The planner performances on the dual-arm manipulator problem described
in Section 5.4.3 (Figure 5.6). The results show that when minimizing path length, EIT*
performs as well as the best performing other asymptotically optimal planners in terms
of success and convergence rates and median initial solution time and cost (a). When
optimizing obstacle clearance, EIT* outperforms all other tested asymptotically optimal
planners in terms of success and convergence rates and median initial solution times (b).
The only planner that finds initial solutions faster than EIT* is again RRT-Connect, which
is not an asymptotically optimal planner and has an inherent computational advantage
because it does not evaluate solution cost.

Effort Informed Trees (EIT*) 135

the benefits of EIT* on high-dimensional manipulator arm problems with realistic

collision detection and optimization objectives.

When minimizing path length on the single-arm manipulator problem, EIT*

performs equally well as BIT*, ABIT*, and AIT*. When optimizing obstacle clear-

ance on the single-arm problem, EIT* outperforms all other tested asymptotically

optimal planners by having the fastest median initial solution time, the best success

rate, and a competitive convergence rate (Figure 5.7).

EIT* performs similarly on the dual-arm manipulator problem. When mini-

mizing path length, EIT* is among the best performing asymptotically optimal

planners and only RRT-Connect has a faster median initial solution time. When

optimizing obstacle clearance, EIT* outperforms all other tested asymptotically

optimal planners with the fastest median initial solution time and competitive

success and convergence rates (Figure 5.8).

The only tested planner that consistently finds initial solutions faster than

EIT* on these manipulator arm problems is RRT-Connect. But RRT-Connect is

not an anytime planner and has an inherent computational advantage because

it does not evaluate solution cost.

5.4.4 Knee replacement dislocation problem

EIT* was also tested on the knee replacement dislocation problem described in

Section 4.4.3 (Figure 4.5), but this time again when minimizing path length and

optimizing obstacle clearance. The problem is viewed as a feasible planning problem

by Yang et al. (2020), which makes the median initial solution time the most

important performance statistic. Nevertheless, the solution quality when optimizing

obstacle clearance could potentially be used to assess the probability of dislocation,

as paths with greater obstacle clearance indicate a larger gap for the mobile bearing.

Effort Informed Trees (EIT*) 136

0

25

50

75

100

Su
cc

es
s

[%
]

101 102
10

20

30

Computation time [s]

C
os

t

(a) Minimizing path length

0

25

50

75

100

Su
cc

es
s

[%
]

101 102

200

400

Computation time [s]

C
os

t

(b) Optimizing obstacle clearance

RRT Informed RRT* Lazy PRM* FMT*
BIT* ABIT* AIT* EIT*

Figure 5.9: The planner performances on the knee replacement dislocation problem
described in Section 5.4.4 (Figure 4.5). The results show that on this problem EIT*
outperforms the other tested planners when optimizing both objectives by finding initial
solutions and reaching 100% success rate faster and returning the best-quality median
solution at any time during the experiment. When optimizing obstacle clearance, only
EIT* reaches a 100% success rate within the time limit. Similarly to RRT-Connect, RRT
has a computational advantage because it does not evaluate solution cost.

Effort Informed Trees (EIT*) 137

Figure 5.9 shows the performances of all planners on the knee replacement

dislocation problem when minimizing path length and optimizing obstacle clearance.

The results show that EIT* outperforms all other tested planners on this problem

for both objectives. When minimizing path length, EIT* finds initial solutions and

reaches a 100% success faster than any other tested planner. EIT* also returns the

best-quality solution at any time during the experiment. When optimizing obstacle

clearance, EIT* also outperforms all other tested planners in terms of median initial

solution times and success and convergence rates. EIT* is the only tested planner

that reaches a 100% success rate and outperforms the other tested planners in terms

of success rates, median initial solution times, and median solution cost over time.

5.5 Discussion

Planning problems often have specific priorities, e.g., preferring fast low-quality

solutions over slow high-quality solutions. Many planners address such priorities by

modifying their searches with indirect mechanisms that rely on implicit assump-

tions. For example, ABIT* seeks to accelerate initial solution times by inflating

a cost heuristic, which assumes that the quality of a solution correlates with the

computational effort required to find it.

Computational effort is platform-specific and difficult to quantify, but the number

of collision checks is a good proxy when fast initial solutions are prioritized (Hauser,

2015; Kleinbort et al., 2016, 2020). The number of collision checks required to find a

solution depends on its length, which is unknown a priori but can be estimated with

the Euclidean distance between its start and goal states. This provides a method

to express intent-specific information about the computational effort required to

find a solution as an effort heuristic that estimates the number of collision checks.

EIT* leverages such intent-specific information in addition to optimization- and

environment-specific information to directly align its search with the priorities of

Effort Informed Trees (EIT*) 138

the given problem. It achieves this with a hierarchical bidirectional search that is

asymmetric in both purpose and computational cost (anecdotally, processing an

edge in the reverse search on average only took 1% as long as processing an edge

in the forward search on a representative example with abstract obstacles). The

inexpensive reverse search with sparse collision detection calculates accurate cost

and effort heuristics for the current approximation by combining cost and effort

heuristics between multiple samples while considering the potential connections of

the current RGG approximation. The expensive forward search directly aligns itself

with the priorities of the given problem by leveraging these accurate heuristics and

informs the reverse search if it considered invalid RGG edges when calculating them.

EIT* used an effort heuristic based on the number of collision checks required

to validate a potential solution in Section 5.4. This is justified because solution

time is initially prioritized over solution cost and collision detection is one of the

computational bottlenecks for the problems presented in this thesis. For problems

that require solving a BVP for each edge evaluation, it may be worth considering

the number of edges in a potential solution instead of (or in addition to) the number

of collision checks because solutions that consist of a few long edges require solving

fewer BVPs than solutions that consist of many short edges.

For applications that optimize the total energy required to solve a planning

problem and execute the resulting path (e.g., Sudhakar et al., 2020), it may be worth

considering a heuristic that estimates the required number of energy intensive search

operations instead of the number of computationally expensive search operations.

Such a heuristic could be used in EIT* as intent-specific information to guide the

search towards solutions that are energy efficient to find and execute.

As in AIT*, the performance of EIT* relative to other planners depends on the

proportion of the computational cost incurred by the reverse search when calculating

the heuristics compared to the computational savings gained by the forward search

when leveraging these heuristics. EIT* therefore also performs best relative to other

planners when full edge evaluation is computationally expensive.

Effort Informed Trees (EIT*) 139

The performance of EIT* depends less than AIT* on the size of the obstacles

relative to the extent of the search space due to the adaptive sparse collision detection

in the reverse search of EIT*. These sparse checks allow EIT* to discover smaller

obstacles than AIT* without improving its RGG approximation. This results in

even more accurate heuristics without incurring much additional computational cost.

EIT* performs especially well relative to other planners when the cost of a

solution does not correlate well with the computational effort required to find it.

Many other planners either do not pursue anytime performance or implicitly assume

that high-quality solutions are fast to find. EIT* instead explicitly distinguishes

between the solution quality and the computational effort required to find it and

leverages its calculated effort heuristic to prioritize paths that result in fast solutions.

AIT* and EIT* use different algorithms for the reverse and forward searches of

their asymmetric bidirectional searches. The change in forward search algorithms

from A* in AIT* to AEES in EIT* is motivated by the benefits of intent-specific

information in the form of an effort heuristic, which cannot be leveraged with A*.

The change in reverse search algorithms from LPA* in AIT* to A* in EIT* is

motivated by the observations that repairing the reverse search tree with LPA* is

only more efficient than restarting A* for small changes in the search tree (between

1% and 2%; Table 1, Aine and Likhachev, 2016), and that detecting invalid edges

with the forward search often results in larger changes in the reverse search tree.

In summary, this chapter presented the following core contributions:

• A review of other sampling-based planners and graph-search algorithms that

leverage intent-specific information to align their searches with the priorities

of a given problem and a discussion of their differences to EIT* (Section 5.1).

• A detailed description of EIT*, which improves on AIT* by leveraging

optimization-, environment-, and intent-specific information to directly reflect

problem priorities in its search (Section 5.2).

Effort Informed Trees (EIT*) 140

• A proof of the almost-sure asymptotic optimality of EIT* that combines estab-

lished results from the literature with a new result on its reverse search (Sec-

tion 5.3).

• Empirical demonstrations of the benefits of EIT* on abstract, nonholonomic,

manipulator, and biomedical problems for two common optimization objec-

tives (Section 5.4).

• A discussion of the empirical results and how the measures introduced in EIT*

address some of the shortcomings of AIT* (Section 5.5).

Chapter 6

Conclusion
Summary, results overview, current and future applications

The path planning problem is about finding paths through continuous spaces. It

is actively studied (Gammell and Strub, 2021) and appears in many applications

in robotics and beyond (Paton et al., 2020; Gonçalves et al., 2021; Yang et al.,

2020). Many recent applications are increasingly complex and require improved

performance. This simultaneous increase in problem complexity and performance

requirements calls for new approaches to the path planning problem.

Path planning problems can be challenging for various reasons. They can be

high dimensional, have complicated system constraints, contain adverse obstacle

configurations, or be computationally expensive due to complex cost evaluation

or collision detection. Some of the most interesting applications combine multiple

of these difficulties. For example, NASA/JPL-Caltech’s Axel rover system com-

pounds complicated tether constraints with computationally expensive collision

detection (Section 3.5). This makes many path planning problems that stem from

real-world applications too difficult to solve in an exact manner.

Two popular approaches to solve such problems approximately are graph-based

searches and sampling-based planners. These approaches have complementary

strengths, but unifying them is difficult. This thesis builds on recent efforts that

141

Conclusion 142

successfully incorporates graph-search techniques in sampling-based planning by

viewing the sampled states as vertices of an RGG that is embedded in the (continu-

ous) search space of a planning problem. This perspective allows the sampling-based

planning algorithms presented in this thesis to build on decades of research from

the graph-search literature.

One of the most compelling strengths of graph-search algorithms is that they

offer a formal basis to leverage problem-specific information. This information is

typically not only specific to a problem but also to a particular component of a

problem. Three components of path planning that can often be described with

additional information are the cost function (optimization-specific information),

the obstacle configuration (environment-specific information), and the set of priori-

ties (intent-specific information). This thesis demonstrates how these three sources

of information can be leveraged in a complementary manner in sampling-based

planning and presents algorithms that outperform existing planners on many path

planning problems from diverse domains.

ABIT* leverages optimization-specific information in all aspects of planning and

to a greater extent than previous sampling-based algorithms. It approximates the

search space by sampling batches of states and it views these samples as vertices in a

series of increasingly dense, edge-implicit RGGs. This sampling-based approximation

is focused to the relevant region of the search space with informed sampling (Gammell

et al., 2018), which uses optimization-specific information in the form of admissible

cost heuristics. This sampling-based approximation is searched with advanced

graph-search techniques, such as inflation and truncation, which again leverages

optimization-specific information in the form of an admissible cost heuristic.

ABIT* was demonstrated to work on Axel, a next-generation NASA/JPL-

Caltech rover that is designed to explore challenging terrain on the Moon and

Mars. ABIT* successfully planned paths for Axel during a week-long field trial in

the Mojave Desert, California, USA (Figure 6.1a; Paton et al., 2020). ABIT* was

Conclusion 143

(a) (b) (c)

Figure 6.1: ABIT* and AIT* have been integrated on three real-world systems by
researchers at NASA/JPL and ORI. ABIT* has planned paths for two next-generation
rover prototypes, Axel (a; Paton et al., 2020) and RoboSimian (a; Reid et al., 2020).
AIT* has been integrated in a system that automatically creates high-fidelity models of
real-world objects (c; Border and Gammell, 2021). Photographs courtesy of NASA/JPL
(a, b) and ORI (c).

independently integrated on RoboSimian, a next-generation NASA/JPL-Caltech

rover that is designed to explore the rugged surface of Europa (a moon of Jupiter)

and successfully planned paths for RoboSimian on salt-evaporite fields in the Death

Valley, California, USA (Figure 6.1b; Reid et al., 2020).

A reference implementation of ABIT* is publicly available in OMPL (Şucan et al.,

2012). The work on ABIT* and its extension to non-Markovian systems presented

in this thesis was first published in the Proceedings of the 2020 IEEE International

Conference on Robotics and Automation (ICRA) and the Proceedings of the 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

The associated publications are:

Strub, M. P. and Gammell, J. D. (2020b). Advanced BIT* (ABIT*): Sampling-
based planning with advanced graph-search techniques. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages
130–136

Paton, M., Strub, M. P., Brown, T., Greene, R. J., Lizewski, J., Patel, V.,
Gammell, J. D., and Nesnas, I. A. (2020). Navigation on the line: Traversabil-
ity analysis and path planning for extreme-terrain rappelling rovers. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7034–7041

Conclusion 144

ABIT* gains environment-specific information when approximating the search

space with valid samples and checking edges for collision, but fails to use this

information during the search and views its sampling-based approximation as an

abstract graph. AIT* instead leverages such environment-specific information in

all aspects of planning, including its search. As in ABIT*, AIT* samples batches

of valid states and views these samples as vertices in a series of increasingly dense,

edge-implicit RGGs. It leverages the environment-specific information inherent in

the observed distribution of its samples with a hierarchical bidirectional search

which is asymmetric in purpose and computational cost and in which both searches

continuously inform each other with complementary information.

AIT* is currently being used by colleagues at ORI as part of a system centered

around the Surface Edge Explorer (SEE; Border et al., 2018; Border and Gammell,

2020) that automatically creates high-fidelity models of real-world objects (Fig-

ure 6.1c; Border and Gammell, 2021). In this application, AIT* plans paths for

a manipulator arm and a rotary stage with a total of seven degrees of freedom.

AIT* is also being investigated by a colleague at Cornell University for improved

performance on tightly coupled task and motion planning problems.

A reference implementation of AIT* is publicly available in OMPL. The work

on AIT* presented in this thesis was first published in the Proceedings of the

2020 IEEE International Conference on Robotics and Automation (ICRA) and an

extended version of this paper has been accepted for publication in the International

Journal of Robotics Research (IJRR). The associated publications are:

Strub, M. P. and Gammell, J. D. (2020a). Adaptively Informed Trees (AIT*):
Fast asymptotically optimal path planning through adaptive heuristics. In
Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3191–3198

Strub, M. P. and Gammell, J. D. (2021b). AIT* and EIT*: Asymmetric
bidirectional sampling-based path planning. The International Journal of
Robotics Research (IJRR). To appear, Manuscript #IJR-21-4179

Conclusion 145

ABIT* AIT* EIT*

Information Optimization-specific Optimization-specific & Optimization-specific,
environment-specific environment-specific &

intent-specific

Approximation Series of RGGs Series of RGGs Series of RGGs

R
ev
er
se

se
ar
ch

Purpose — Calculate cost Calculate cost & effort
Algorithm — Vertex-queue LPA* Edge-queue A*
Ordering — A priori cost A priori cost & effort
Validation — None Sparse collision checks

Fo
rw

ar
d

se
ar
ch

Purpose Find valid paths Find valid paths Find valid paths
Algorithm Edge-queue ATD* Edge-queue A* Edge-queue AEES
Ordering A priori cost Calculated cost Calculated cost & effort
Validation Dense collision checks Dense collision checks Dense collision checks

Table 6.1: An overview of the information and algorithm components used by ABIT*,
AIT*, and EIT*. All three algorithms approximate the search space with the sames series
of increasingly dense RGGs. ABIT* leverages optimization-specific information. It does
not have a reverse search and finds valid paths with an edge-queue version of ATD* ordered
by the (inflated) total potential solution cost according to an a priori admissible cost
heuristic. AIT* leverages optimization- and environment-specific information. It calculates
an admissible cost heuristic with a reverse LPA* search ordered by the total potential
solution cost according to an a priori admissible cost heuristic. It finds valid paths with
an edge-queue version of A* ordered by the total potential solution cost according to the
cost heuristic calculated by its reverse search. EIT* leverages optimization-, environment-,
and intent-specific information. It calculates admissible and inadmissible cost and effort
heuristics with a reverse A* search ordered by the total potential solution cost and effort
according to a priori cost and effort heuristics. It finds valid paths with an edge-queue
version of AEES ordered by the total potential solution cost and effort according to the
heuristics calculated by its reverse search.

AIT* leverages optimization- and environment-specific information but does not

directly reflect problem-specific priorities, such as a desire for fast initial solution

times, in its search order. Similar to ABIT*, AIT* seeks to accelerate planning

with an indirect mechanism that implicitly assumes that the quality of a solution

correlates with the computational effort required to find it. EIT* instead directly

aligns its search with the priorities of a problem by leveraging intent-specific

information. It achieves this similarly as AIT* with a hierarchical bidirectional

search, but simultaneously calculates and leverages cost and effort heuristic to guide

the search by its ultimate purpose (Table 6.1).

Conclusion 146

EIT* has not yet been demonstrated on a real-world system, but is currently

being investigated by colleagues at Cornell University and TU Berlin for improved

multiquery path planning and task and motion planning, respectively.

A reference implementation of EIT* is publicly available in OMPL. The work on

EIT* presented in this thesis has been accepted for publication in the International

Journal of Robotics Research (IJRR). The associated publication is:

Strub, M. P. and Gammell, J. D. (2021b). AIT* and EIT*: Asymmetric
bidirectional sampling-based path planning. The International Journal of
Robotics Research (IJRR). To appear, Manuscript #IJR-21-4179

This thesis identifies and investigates multiple sources of information that can

be leveraged to solve continuous planning problems. This is achieved by separating

the approximation of the search space from the search of this approximation.

The algorithms presented in this thesis approximate planning problems with ever

more refined approximations based on batches of samples, similar to BIT*. These

sampling-based approximations are searched with advanced graph search techniques,

similar to ATD*, LPA*, and AEES, either unidirectionally or with a hierarchical

bidirectional search that it asymmetric in purpose and computational cost. This

strengthens the conceptual connection between sampling-based planning and graph-

based search and improves practical performance on many of the tested problems.

The benefits of ABIT*, AIT*, or EIT* are demonstrated on a wide variety of

problems, but it is also demonstrated that they are not the best choice for every

planning problem. End-users should consider problem properties when selecting a

planner and the following three paragraphs aim to aid in that selection.

BIT* and ABIT* often outperform planners that build search trees from both

directions, such as RRT-Connect, AIT*, and EIT*, if the area around the start

is cluttered with obstacles and the area around the goal is mostly obstacle free.

For example, such an obstacle configuration emerged in one of the 200 random

Conclusion 147

Reeds-Shepp problems evaluated in this thesis. RRT-Connect and AIT* were

unable to solve this instance in any of their 100 attempts and EIT* only succeeded

once in its 100 attempts. BIT* and ABIT* successfully solved this instance in

80 and 76 out of 100 attempts, respectively.

BIT*, ABIT*, and AIT* depend on admissible cost heuristics to guide their

searches. If no admissible cost heuristic is available, then they often do not show

improved performance over uninformed planners, such as FMT*. Note that EIT*

can still find initial solutions quickly, because it initially orders its search on

computational effort instead of solution cost.

Finally, the performance improvement of AIT* and EIT* depends on the compu-

tational cost of edge evaluation (i.e., collision detection and edge-cost computation).

For example, anecdotal tests not presented in this thesis show that the denser the

collision detection resolution is on the abstract problems of Sections 3.4.1 and 5.4.1,

the better AIT* and EIT* perform relative to other planners. This trend is also

evident from the empirical results presented in this thesis, as AIT* and EIT* per-

form best when collision detection is most expensive (i.e., on the knee replacement

dislocation problem of Sections 4.4.3 and 5.4.4). A possible explanation for this is

that AIT* and EIT* fully evaluate the least number of edges due to their more ac-

curate heuristics and the computational overhead of improving their heuristics with

the reverse search becomes negligible as edge evaluation becomes more expensive.

Ongoing extensions of the work presented in this thesis include applying the

ideas developed in AIT* to task an motion planning and modifying EIT* to leverage

previous work in a multiquery setting. Future work might look into finding better

ways to tune parameter update policies for ABIT* and EIT*, and using different

types of intention-specific information in EIT*. EIT* could also be tailored to

specific problem domains by learning cost and effort heuristics from data of that

domain. Many learning techniques could be used to learn such heuristics since EIT*

can leverage cost and effort heuristics even if they are not admissible.

Conclusion 148

In summary, this thesis presented the following core contributions:

• A conceptual identification of optimization-, environment-, and intent-specific

information and a demonstration how these sources of information can be

leveraged to improve performance in sampling-based planning.

• A detailed description of ABIT*, which shows how optimization-specific

information can be leveraged effectively by incorporating advanced graph-

search techniques in sampling-based planning (Chapter 3).

• A detailed description of AIT*, which shows how optimization- and environ-

ment-specific information can be leveraged effectively by searching sampling-

based approximations with a hierarchical bidirectional search that is asym-

metric in purpose and computational cost (Chapter 4).

• A detailed description of EIT*, which shows how optimization-, environment-

and intent-specific information can be leveraged to align the search of a

problem with its specific priorities (Chapter 5).

• Proofs of the almost-sure asymptotic optimality of ABIT*, AIT*, and EIT*

that combine established results from the literature on sampling-based plan-

ning and graph-based search (Chapters 3, 4, and 5).

• Empirical demonstrations of the benefits of ABIT*, AIT*, and EIT* on

abstract, nonholonomic, manipulator, and biomedical problems with diverse

search spaces of up to 16 dimensions, including nonholonomic constraints and

optimizing two popular objectives (Chapters 3, 4, and 5).

• Publicly available C++ implementations of ABIT*, AIT*, and EIT* in

OMPL (more information at https://robotic-esp.com/code/).

https://robotic-esp.com/code/

Bibliography

Adiyatov, O., Sultanov, K., Zhumabek, O., and Varol, H. A. (2017). Sparse
tree heuristics for RRT* family motion planners. In Proceedings of the IEEE
International Conference on Advanced Intelligent Mechatronics (AIM), pages
1447–1452. (Cited on page 32.)

Agarwal, P. K., Fox, K., and Salzman, O. (2018). An efficient algorithm for
computing high-quality paths amid polygonal obstacles. ACM Transactions on
Algorithms, 14(4):1–21. (Cited on page 124.)

Aine, S. and Likhachev, M. (2016). Truncated incremental search. Artificial
Intelligence, 234:49–77. (Cited on pages 25, 52, 53, 79, 80, 85, and 139.)

Aine, S., Swaminathan, S., Narayanan, V., Hwang, V., and Likhachev, M. (2014).
Multi-Heuristic A*. In Proceedings of Robotics: Science and Systems (RSS),
pages 1–10. (Cited on page 23.)

Aine, S., Swaminathan, S., Narayanan, V., Hwang, V., and Likhachev, M. (2016).
Multi-Heuristic A*. The International Journal of Robotics Research (IJRR),
35(1–3):224–243. (Cited on page 23.)

Akgun, B. and Stilman, M. (2011). Sampling heuristics for optimal motion planning
in high dimensions. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2640–2645. (Cited on page 32.)

Akinc, M., Bekris, K. E., Chen, B. Y., Ladd, A. M., Plaku, E., and Kavraki, L. E.
(2003). Probabilistic Roadmaps of Trees for parallel computation of multiple
query roadmaps. In Proceedings of the International Symposium of Robotics
Research (ISRR), volume 15, pages 80–89. (Cited on page 29.)

Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. (1998a).
Choosing good distance metrics and local planners for probabilistic roadmap
methods. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 630–637. (Cited on page 29.)

Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. (1998b).
OBPRM: An obstacle-based PRM for 3d workspaces. In Proceedings of the
International Workshop on the Algorithmic Foundations of Robotics (WAFR),
pages 155–168. (Cited on page 28.)

149

BIBLIOGRAPHY 150

Amato, N. M. and Wu, Y. (1996). A randomized roadmap method for path and
manipulation planning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), volume 1, pages 113–120. (Cited on page 28.)

Anshelevich, E., Owens, S., Lamiraux, F., and Kavraki, L. E. (2000). Deformable
volumes in path planning applications. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2290–2295. (Cited on
page 29.)

Apaydin, M. S., Singh, A. P., Brutlag, D. L., and Latombe, J.-C. (2001). Capturing
molecular energy landscapes with probabilistic conformational roadmaps. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 932–939. (Cited on page 29.)

Arefin, A. K. S. and Saha, B. A. K. (2010). A new approach of iterative deepening bi-
directional heuristic front-to-front algorithm (IDBHFFA). International Journal
of Electrical & Computer Sciences (IJECS-IJENS), 10(2):12–20. (Cited on
page 21.)

Arslan, O., Berntorp, K., and Tsiotras, P. (2017). Sampling-based algorithms for
optimal motion planning using closed-loop prediction. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 4991–4996.
(Cited on page 31.)

Arslan, O. and Tsiotras, P. (2013). Use of relaxation methods in sampling-based
algorithms for optimal motion planning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2421–2428. (Cited on
page 31.)

Arslan, O. and Tsiotras, P. (2015). Dynamic programming guided exploration
for sampling-based motion planning algorithms. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 4819–4826.
(Cited on page 31.)

Barker, J. K. and Korf, R. E. (2015). Limitations of front-to-end bidirectional
heuristic search. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 1086–1092. (Cited on page 20.)

Barraquand, J., Kavraki, L. E., Latombe, J.-C., Motwani, R., Li, T.-Y., and
Prabhakar, R. (1997). A random sampling scheme for path planning. The
International Journal of Robotics Research (IJRR), 16(6):759–774. (Cited on
page 29.)

Bayazit, O. B., Lien, J.-M., and Amato, N. M. (2002). Probabilistic roadmap
motion planning for deformable objects. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2126–2133. (Cited on
page 29.)

BIBLIOGRAPHY 151

Bayazit, O. B., Song, G., and Amato, N. M. (2001a). Enhancing randomized motion
planners: Exploring with haptic hints. Autonomous Robots, 10(2):163–174. (Cited
on page 29.)

Bayazit, O. B., Song, G., and Amato, N. M. (2001b). Ligand binding with OBPRM
and haptic user input. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 954–959. (Cited on page 29.)

Bekris, K. E., Chen, B. Y., Ladd, A. M., Plaku, E., and Kavraki, L. E. (2003). Mul-
tiple query probabilistic roadmap planning using single query planning primitives.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 656–661. (Cited on page 29.)

Bekris, K. E. and Kavraki, L. E. (2008). Informed and probabilistically complete
search for motion planning under differential constraints. In Proceedings of the
International Symposium on Search Techniques in Artificial Intelligence and
Robotics, pages 3–10. (Cited on page 124.)

Berenson, D., Siméon, T., and Srinivasa, S. S. (2011). Addressing cost-space chasms
in manipulation planning. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 4561–4568. (Cited on page 31.)

Bertram, D., Kuffner Jr., J. J., Dillmann, R., and Asfour, T. (2006). An integrated
approach to inverse kinematics and path planning for redundant manipulators. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 1874–1879. (Cited on page 31.)

Bohlin, R. and Kavraki, L. E. (2000). Path planning using Lazy PRM. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
521–528. (Cited on page 30.)

Boor, V., Overmars, M. H., and van der Stappen, A. F. (1999). The Gaussian
sampling strategy for probabilisitic roadmap planners. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 1018–1023.
(Cited on page 29.)

Border, R. and Gammell, J. D. (2020). Proactive estimation of occlusions and
scene coverage for planning next best views in an unstructured representation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4219–4226. (Cited on page 144.)

Border, R. and Gammell, J. D. (2021). The Surface Edge Explorer (SEE): A
measurement-direct approach to next best view planning. In preparation. (Cited
on pages 143 and 144.)

Border, R., Gammell, J. D., and Newman, P. (2018). Surface Edge Explorer:
Planning next best views directly from 3D observations. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages 1–8.
(Cited on page 144.)

BIBLIOGRAPHY 152

Branicky, M. S., LaValle, S. M., Olson, K., and Yang, L. (2001). Quasi-randomized
path planning. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1481–1487. (Cited on pages 29 and 49.)

Bruce, J. and Veloso, M. (2002). Real-time randomized path planning for robot nav-
igation. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2383–2388. (Cited on page 32.)

Burget, F., Bennewitz, M., and Burgard, W. (2016). BI2RRT*: An efficient sampling-
based path planning framework for task-constrained mobile manipulation. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3714–3721. (Cited on page 31.)

Burns, B. and Brock, O. (2003). Information theoretic construction of probabilis-
tic roadmaps. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 650–655. (Cited on page 29.)

Burns, B. and Brock, O. (2004). Model-based motion planning. Technical report,
University of Massachusetts Amherst. (Cited on page 29.)

Burns, E., Ruml, W., and Do, M. B. (2013). Heuristic search when time mat-
ters. Journal of Artificial Intelligence Research (JAIR), 47:697–740. (Cited on
page 105.)

Cadmus To, K. Y., Lee, B. K. M., Yoo, C., Anstee, S., and Fitch, R. (2019).
Streamlines for motion planning in underwater currents. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages
4619–4625. (Cited on page 29.)

Cadmus To, K. Y., Yoo, C., Anstee, S., and Fitch, R. (2020). Distance and steering
heuristics for streamline-based flow field planning. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 1867–1873.
(Cited on page 32.)

Canny, J. F. (1988). The complexity of robot motion planning. MIT Press. ISBN:
978-0-262-03136-3. (Cited on page 13.)

Caron, S., Pham, Q.-C., and Nakamura, Y. (2014). Completeness of randomized
kinodynamic planners with state-based steering. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 5818–5823.
(Cited on page 32.)

Chen, C., Rickert, M., and Knoll, A. (2013). Combining space exploration and
heuristic search in online motion planning for nonholonomic vehicles. In Proceed-
ings of the IEEE Intelligent Vehicles Symposium (IV), pages 1307–1312. (Cited
on page 124.)

Chen, J., Holte, R. C., Zilles, S., and Sturtevant, N. R. (2017). Front-to-end
bidirectional heuristic search with near-optimal node expansions. In Proceedings

BIBLIOGRAPHY 153

of the International Joint Conference on Artificial Intelligence (IJCAI), pages
489–495. (Cited on page 20.)

Chen, L., Yu, L., Libin, S., and Jiwen, Z. (2021). Greedy BIT* (GBIT*): Greedy
search policy for sampling-based optimal planning with a faster initial solution and
convergence. In Proceedings of the IEEE International Conference on Computer,
Control, and Robotics (ICCCR), pages 30–36. (Cited on page 68.)

Chen, P. C. and Hwang, Y. K. (1998). SANDROS: A dynamic graph search
algorithm for motion planning. IEEE Transactions on Robotics and Automation,
14(3):390–403. (Cited on page 124.)

Cheng, A., Saxena, D. M., and Likhachev, M. (2019). Bidirectional heuristic search
for motion planning with an extend operator. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 7425–
7430. (Cited on page 23.)

Cheng, P. and LaValle, S. M. (2001). Reducing metric sensitivity in randomized
trajectory design. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 43–48. (Cited on page 31.)

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., and Scherer, S.
(2016). Regionally Accelerated Batch Informed Trees (RABIT*): A framework
to integrate local information into optimal path planning. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pages
4207–4214. (Cited on page 44.)

Cohen, B., Phillips, M., and Likhachev, M. (2014). Planning single-arm manipula-
tions with n-arm robots. In Proceedings of Robotics: Science and Systems (RSS),
pages 1–9. (Cited on pages 48 and 72.)

Connell, D. and Manh La, H. (2017). Dynamic path planning and replanning for
mobile robots using RRT*. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics (SMC), pages 1429–1434. (Cited on page 32.)

Cortés, J., Jaillet, L., and Siméon, T. (2007). Molecular disassembly with RRT-like
algorithms. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 3301–3306. (Cited on page 32.)

Şucan, I. A., Moll, M., and Kavraki, L. E. (2012). The Open Motion Planning
Library. IEEE Robotics Automation Magazine, 19(4):72–82. (Cited on pages 8
and 143.)

Culberson, J. C. and Schaeffer, J. (1996). Searching with pattern databases. In
Proceedings of the 11th Conference of the Canadian Society for the Computational
Study of Intelligence, pages 402–416. (Cited on page 26.)

Culberson, J. C. and Schaeffer, J. (1998). Pattern databases. Computational
Intelligence, 14(3):318–334. (Cited on page 26.)

BIBLIOGRAPHY 154

Dalibard, S. and Laumond, J.-P. (2008). Control of probabilistic diffusion in motion
planning. In Algorithmic Foundations of Robotics VIII, volume 57, pages 467–481.
Springer. (Cited on page 31.)

Dantzig, G. B. (1963). Linear programming and extensions. Princeton University
Press. ISBN: 978-0-691-08000-3. (Cited on pages 18 and 19.)

Das, N. and Yip, M. (2020). Learning-based proxy collision detection for robot
motion planning applications. IEEE Transactions on Robotics (T-RO), 36(4):1096–
1114. (Cited on page 57.)

Davis, H. W., Pollack, R. B., and Sudkamp, T. (1984). Towards a better understand-
ing of bidirectional search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 68–72. (Cited on page 21.)

de Champeaux, D. (1983). Bidirectional heuristic search again. Journal of the
Association for Computing Machinery (JACM), 30(1):22–32. (Cited on page 21.)

de Champeaux, D. and Sint, L. (1977). An improved bidirectional heuristic
search algorithm. Journal of the Association for Computing Machinery (JACM),
24(2):177—191. (Cited on page 21.)

Dechter, R. and Pearl, J. (1985). Generalized best-first search strategies and the
optimality of A*. Journal of the Association for Computing Machinery (JACM),
32(3):505–536. (Not cited.)

Dellin, C. M. and Srinivasa, S. S. (2016). A unifying formalism for shortest path
problems with expensive edge evaluations via lazy best-first search over paths
with edge selectors. In Proceedings of the AAAI International Conference on
Automated Planning and Scheduling (ICAPS), pages 459–467. (Cited on page 72.)

Denny, J., Morales, M., Rodriguez, S., and Amato, N. M. (2013). Adapting
RRT growth for heterogeneous environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1772–
1778. (Cited on page 32.)

Devaurs, D., Siméon, T., and Cortés, J. (2013). Enhancing the Transition-Based
RRT to deal with complex cost spaces. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 4120–4125. (Cited on
page 31.)

Devaurs, D., Siméon, T., and Cortés, J. (2014). A multi-tree extension of the
Transition-Based RRT: Application to ordering-and-pathfinding problems in
continuous cost spaces. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2991–2996. (Cited on page 31.)

Devaurs, D., Siméon, T., and Cortés, J. (2016). Optimal path planning in complex
cost spaces with sampling-based algorithms. IEEE Transactions on Automation
Science and Engineering (TASE), 13(2):415–424. (Cited on page 31.)

BIBLIOGRAPHY 155

Diankov, R. (2010). Automated construction of robotic manipulation programs. PhD
thesis, Carnegie Mellon University. (Cited on page 93.)

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271. (Cited on pages 15, 17, and 42.)

Dillenburg, J. F. and Nelson, P. C. (1994). Perimeter search. Artificial Intelligence,
65(1):165–178. (Cited on page 21.)

Dreyfus, S. E. (1969). An appraisal of some shortest-path algorithms. Operations
Research, 17(3):395–412. (Cited on page 19.)

Du, W., Islam, F., and Likhachev, M. (2020). Multi-Resolution A*. In Proceedings
of the Symposium on Combinatorial Search (SoCS), pages 29–37. (Cited on
page 16.)

Edelkamp, S. and Schrödel, S. (2011). Heuristic search: Theory and applications.
Morgan Kaufmann Publishers, Inc. ISBN: 978-0-12-372512-7. (Cited on page 20.)

Esposito, J. M. and Wright, J. N. (2019). Matrix completion as a post-processing
technique for probabilistic roadmaps. The International Journal of Robotics
Research (IJRR), 38(2-3):388–400. (Cited on page 29.)

Felner, A., Korf, R. E., and Hanan, S. (2004). Additive pattern database heuristics.
Journal of Artificial Intelligence Research (JAIR), 22:279–318. (Cited on page 26.)

Ferguson, D., Kalra, N., and Stentz, A. (2006). Replanning with RRTs. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 1243–1248. (Cited on page 32.)

Ferguson, D. and Stentz, A. (2006). Anytime RRTs. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5369–
5375. (Cited on page 32.)

Ferguson, D. and Stentz, A. (2007). Anytime, dynamic planning in high-dimensional
search spaces. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1310–1315. (Cited on page 32.)

Gammell, J. D. (2017). Informed anytime search for continuous planning problems.
PhD thesis, University of Toronto. (Cited on page 2.)

Gammell, J. D., Barfoot, T. D., and Srinivasa, S. S. (2018). Informed sampling for
asymptotically optimal path planning. IEEE Transactions on Robotics (T-RO),
34(4):966–984. (Cited on pages 4, 31, 46, 49, 75, 106, and 142.)

Gammell, J. D., Barfoot, T. D., and Srinivasa, S. S. (2020). Batch Informed Trees
(BIT*): Informed asymptotically optimal anytime search. The International
Journal of Robotics Research (IJRR), 39(5):543–567. (Cited on pages 4, 33, 42,
49, and 84.)

BIBLIOGRAPHY 156

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2014). Informed RRT*:
Optimal sampling-based path planning via direct sampling of an admissible
ellipsoidal heuristic. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2997–3004. (Cited on page 31.)

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2015). Batch Informed Trees
(BIT*): Sampling-based optimal planning via the heuristically guided search of
implicit random geometric graphs. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3067–3074. (Cited on
pages 4, 33, and 42.)

Gammell, J. D. and Strub, M. P. (2021). Asymptotically optimal sampling-based
motion planning methods. Annual Review of Control, Robotics, and Autonomous
Systems, 4(1):295–318. (Cited on pages 8, 34, and 141.)

García, F. M., Kapadia, M., and Badler, N. (2014). GPU-based dynamic search on
adaptive resolution grids. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). (Cited on page 16.)

Geraerts, R. and Overmars, M. H. (2004). Sampling techniques for probabilistic
roadmap planners. Technical report, Utrecht University. (Cited on page 29.)

Geraerts, R. and Overmars, M. H. (2007). Creating high-quality paths for motion
planning. The International Journal of Robotics Research (IJRR), 26(8):845–863.
(Cited on page 124.)

Glassman, E. and Tedrake, R. (2010). A quadratic regulator-based heuristic for
rapidly exploring state space. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 5021–5028. (Cited on page 32.)

Gonçalves, V. M., Bolonhez, E. M. B., Campos, G. E. M., and Hoffmann Sathler, L.
(2021). Transmission line routing optimization using rapid random trees. Electric
Power Systems Research (EPSR), 194:1–11. (Cited on pages 1, 2, and 141.)

Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBBTree: A hierarchical
structure for rapid interference detection. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, pages 171–180.
(Cited on pages 59 and 93.)

Gunther, T. V., Murray, D. W., Miller, R., Wallace, D. A., Carr, A. J., O’Connor,
J. J., McLardy-Smith, P., and Goodfellow, J. W. (1996). Lateral unicompartmen-
tal arthroplasty with the Oxford meniscal knee. The Knee, 3(1):33–39. (Cited on
page 95.)

Hansen, E. A. and Zhou, R. (2007). Anytime heuristic search. Journal of Artificial
Intelligence Research, 28(1):267–297. (Cited on page 24.)

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science

BIBLIOGRAPHY 157

and Cybernetics, 4(2):100–107. (Cited on pages 2, 17, 18, 43, 85, 113, 119, 120,
and 121.)

Hatem, M. and Ruml, W. (2014). Simpler bounded suboptimal search. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 856–862. (Cited on
page 105.)

Hauser, K. (2015). Lazy collision checking in asymptotically-optimal motion plan-
ning. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2951–2957. (Cited on pages 30, 101, 110, and 137.)

Heiden, E., Palmieri, L., Bruns, L., Arras, K. O., Sukhatme, G. S., and Koenig,
S. (2021). Bench-MR: A motion planning benchmark for wheeled mobile robots.
IEEE Robotics and Automation Letters (RA-L). (Cited on page 124.)

Helgason, R. V., Kennington, J. L., and Stewart, B. D. (1993). The one-to-one
shortest-path problem: An empirical analysis with the two-tree Dijkstra algorithm.
Computational Optimization and Applications, 2(1). 47–75. (Cited on page 18.)

Holleman, C. and Kavraki, L. E. (2000). A framework for using the workspace medial
axis in PRM planners. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 1408–1413. (Cited on page 28.)

Holston, A. C., Kim, D.-H., and Kim, J.-H. (2017). Fast-BIT*: Modified heuristics
for sampling-based optimal planning with a faster first solution and convergence
in implicit random geometric graphs. In Proceedings of the IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 1892–1899. (Cited on
page 44.)

Holte, R. C., Felner, A., Sharon, G., Sturtevant, N. R., and Chen, J. (2017). MM: A
bidirectional search algorithm that is guaranteed to meet in the middle. Artificial
Intelligence, 252:232–266. (Cited on page 19.)

Holte, R. C., Perez, M. B., Zimmer, R. M., and MacDonald, A. J. (1996). Hierarchical
A*: Searching abstraction hierarchies efficiently. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 530–535. (Cited on page 26.)

Hsu, D., Jiang, T., Reif, J., and Sun, Z. (2003). The bridge test for sampling
narrow passages with probabilistic roadmap planners. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 4420–4426.
(Cited on page 28.)

Hsu, D., Kavraki, L. E., Latombe, J.-C., Motwani, R., and Sorkin, S. (1998). On
finding narrow passages with probabilistic roadmap planners. In Proceedings of
the International Workshop on the Algorithmic Foundations of Robotics (WAFR),
pages 141–154. (Cited on page 28.)

Hsu, D., Latombe, J.-C., and Kurniawati, H. (2006). On the probabilistic founda-
tions of Probabilistic Roadmap planning. The International Journal of Robotics
Research (IJRR), 25(7):627–643. (Cited on page 29.)

BIBLIOGRAPHY 158

Hsu, D., Latombe, J.-C., and Motwani, R. (1997). Path planning in expansive
configuration spaces. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 495–512. (Cited on page 32.)

Hsu, D., Sánchez-Ante, G., and Sun, Z. (2005). Hybrid PRM sampling with a cost-
sensitive adaptive strategy. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3874–3880. (Cited on page 29.)

Huynh, J. (2008). Separating axis theorem for oriented bounding boxes. Technical
report, University of California. (Cited on page 59.)

Hwan, J. J., Karaman, S., and Frazzoli, E. (2011). Anytime computation of time-
optimal off-road vehicle maneuvers using the RRT. In Proceedings of the IEEE
Conference on Decision and Control (CDC), pages 3276–3282. (Cited on page 31.)

Islam, F., Narayanan, V., and Likhachev, M. (2016). A*-Connect: Bounded
suboptimal bidirectional heuristic search. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2752–2758. (Cited on
page 23.)

Isto, P. (2002). Constructing probabilisitic roadmaps with powerful local planning
and path optimization. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2323–2328. (Cited on page 29.)

Jaillet, L., Cortés, J., and Siméon, T. (2008). Transition-based RRT for path
planning in continuous cost spaces. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2145–2150. (Cited
on page 31.)

Jaillet, L., Cortés, J., and Siméon, T. (2010). Sampling-based path planning on
configuration-space costmaps. IEEE Transactions on Robotics (T-RO), 26(4):635–
646. (Cited on page 31.)

Jaillet, L., Yershova, A., LaValle, S. M., and Siméon, T. (2005). Adaptive tuning of
the sampling domain for dynamic-domain RRTs. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2851–
2856. (Cited on page 32.)

Janson, L., Ichter, B., and Pavone, M. (2018). Deterministic sampling-based motion
planning: Optimality, complexity, and performance. The International Journal
of Robotics Research (IJRR), 37(1):46–61. (Cited on pages 29, 30, 42, and 50.)

Janson, L. and Pavone, M. (2013). Fast Marching Trees: A fast marching sampling-
based method for optimal motion planning in many dimensions. In Proceedings of
the International Symposium of Robotics Research (ISRR), pages 667–684. (Cited
on pages 32 and 42.)

Janson, L., Schmerling, E., Clark, A., and Pavone, M. (2015). Fast Marching
Tree: A fast marching sampling-based method for optimal motion planning

BIBLIOGRAPHY 159

in many dimensions. The International Journal of Robotics Research (IJRR),
34(7):883–921. (Cited on pages 33, 42, 50, and 84.)

Kaindl, H. and Kainz, G. (1997). Bidirectional heuristic search reconsidered. Journal
of Artificial Intelligence Research (JAIR), 7(7):283–317. (Cited on pages 20
and 21.)

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011).
STOMP: Stochastic trajectory optimization for motion planning. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
4569–4574. (Cited on page 11.)

Karaman, S. and Frazzoli, E. (2010a). Incremental sampling-based algorithms for
optimal motion planning. In Proceedings of Robotics: Science and Systems (RSS),
pages 267–274. (Cited on pages 2 and 31.)

Karaman, S. and Frazzoli, E. (2010b). Optimal kinodynamic motion planning using
incremental sampling-based methods. In Proceedings of the IEEE Conference on
Decision and Control (CDC), pages 7681–7687. (Cited on page 31.)

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research (IJRR), 30(7):846–894.
(Cited on pages 2, 12, 14, 29, 30, 31, 32, 33, 34, 35, 49, 52, 84, 85, and 119.)

Karaman, S. and Frazzoli, E. (2013). Sampling-based optimal motion planning
for non-holonomic dynamical systems. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 5041–5047. (Cited on
page 31.)

Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., and Teller, S. (2011). Anytime
motion planning using the RRT*. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 1478–1483. (Cited on
page 31.)

Kavraki, L. E., Kolountzakis, M. N., and Latombe, J.-C. (1998a). Analysis of
probabilistic roadmaps for path planning. IEEE Transactions on Robotics and
Automation, 14(1):166–171. (Cited on page 29.)

Kavraki, L. E., Lamiraux, F., and Holleman, C. (1998b). Towards planning for
elastic objects. In Proceedings of the International Workshop on the Algorithmic
Foundations of Robotics (WAFR), pages 313–325. (Cited on page 29.)

Kavraki, L. E. and Latombe, J.-C. (1994). Randomized preprocessing of configura-
tion for fast path planning. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 2138–2145. (Cited on page 28.)

Kavraki, L. E., Latombe, J.-C., Motwani, R., and Prabhakar, R. (1998c). Random-
ized query processing in robot path planning. Journal of Computer and System
Sciences (JCSS), 57(1):50–60. (Cited on page 29.)

BIBLIOGRAPHY 160

Kavraki, L. E., Švestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilis-
tic roadmaps for path planning in high dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580. (Cited on pages 28
and 103.)

Kiesel, S. (2016). Robotics needs non-classical planning. PhD thesis, University of
New Hampshire. (Cited on page 104.)

Kiesel, S., Burns, E., and Ruml, W. (2012). Abstraction-guided sampling for motion
planning. In Proceedings of the Symposium on Combinatorial Search (SOCS),
pages 162–163. (Cited on page 74.)

Kiesel, S., Gu, T., and Ruml, W. (2017). An effort bias for sampling-based motion
planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2864–2871. (Cited on pages 103 and 104.)

Kim, D., Kwon, Y., and Yoon, S.-E. (2018). Dancing PRM*: Simultaneous planning
of sampling and optimization with configuration free space approximation. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 7071–7078. (Cited on page 124.)

Kingston, Z., Moll, M., and Kavraki, L. E. (2018). Sampling-based methods for
motion planning with constraints. Annual Review of Control, Robotics, and
Autonomous Systems, 1(1):159–185. (Cited on page 13.)

Kingston, Z., Moll, M., and Kavraki, L. E. (2019). Exploring implicit spaces for
constrained sampling-based planning. The International Journal of Robotics
Research (IJRR), 38(10-11):1151–1178. (Cited on page 13.)

Kleinbort, M., Salzman, O., and Halperin (2016). Collision detection or nearest-
neighbor search? On the computational bottleneck in sampling-based motion
planning. In Proceedings of the International Workshop on the Algorithmic
Foundations of Robotics (WAFR), volume 13, pages 624–639. (Cited on pages 101,
110, and 137.)

Kleinbort, M., Salzman, O., and Halperin, D. (2020). Collision detection or nearest-
neighbor search? On the computational bottleneck in sampling-based motion
planning. In Algorithmic Foundations of Robotics XII, volume 13, pages 624–639.
Springer. (Cited on pages 35, 101, 110, and 137.)

Kleinbort, M., Solovey, K., Littlefield, Z., Bekris, K. E., and Halperin, D. (2019).
Probabilistic completeness of RRT for geometric and kinodynamic planning with
forward propagation. IEEE Robotics and Automation Letters (RA-L), 4(2):10–16.
(Cited on page 32.)

Klemm, S., Oberländer, J., Hermann, A., Roennau, A., Schamm, T., Zollner, J. M.,
and Dillmann, R. (2015). RRT*-Connect: Faster, asymptotically optimal motion
planning. In Proceedings of the IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 1670–1677. (Cited on page 31.)

BIBLIOGRAPHY 161

Ko, I., Kim, B., and Park, F. C. (2014). Randomized path planning on vector fields.
The International Journal of Robotics Research (IJRR), 33(13):1664–1682. (Cited
on page 32.)

Koenig, S. and Likhachev, M. (2002). D* Lite. In Proceedings of the National
Conference on Artificial Intelligence, pages 476–483. (Cited on pages 25 and 103.)

Koenig, S. and Likhachev, M. (2005). Adaptive A*. In Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1311–1312. (Cited on page 25.)

Koenig, S. and Likhachev, M. (2006). Real-Time Adaptive A*. In Proceedings of
the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 281–288. (Cited on page 25.)

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong Planning A*. Artificial
Intelligence, 155(1-2):93–146. (Cited on pages 25, 79, 86, 88, and 89.)

Köll, A. L. and Kaindl, H. (1993). Bidirectional best-first search with bounded
error: Summary of results. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 217–223. (Cited on page 23.)

Korf, R. E. (1985). Depth-First Iterative-Deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97–109. (Cited on page 105.)

Korf, R. E. (1997). Finding optimal solutions to Rubik’s cube using pattern
databases. In Proceedings of the AAAI National Conference on Artificial Intelli-
gence, pages 700–705. (Cited on page 26.)

Kuffner Jr., J. J. and LaValle, S. M. (2000). RRT-Connect: An efficient approach to
single-query path planning. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 995–1001. (Cited on page 31.)

Kunz, T. and Stilman, M. (2014). Kinodynamic RRTs with fixed time step and
best-input extension are not probabilistically complete. In Proceedings of the
International Workshop on the Algorithmic Foundations of Robotics (WAFR),
pages 233–244. (Cited on page 32.)

Kwa, J. B. H. (1989). BS*: An admissible bidirectional staged heuristic search
algorithm. Artificial Intelligence, 38:95–109. (Cited on pages 19 and 20.)

Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. (2000). Fast distance queries
with rectanular swept sphere volumes. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3719–3726. (Cited on
page 132.)

LaValle, S. M. (1998). Rapidly-exploring Random Trees: A new tool for path
planning. Technical Report TR 98-11, Computer Science Department, Iowa State
University. (Cited on page 30.)

BIBLIOGRAPHY 162

LaValle, S. M., Branicky, M. S., and Lindemann, S. R. (2004). On the relationship
between classical grid search and probabilistic roadmaps. The International
Journal of Robotics Research (IJRR), 23(7-8):673–692. (Cited on pages 29
and 49.)

LaValle, S. M. and Kuffner Jr., J. J. (1999). Randomized kinodynamic planning. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 473–479. (Cited on pages 2 and 30.)

LaValle, S. M. and Kuffner Jr., J. J. (2001). Randomized kinodynamic planning.
The International Journal of Robotics Research (IJRR), 20(5):378–400. (Cited
on pages 2, 30, and 32.)

Le, D. and Plaku, E. (2014). Guiding sampling-based tree search for motion
planning with dynamics via probabilistic roadmap abstractions. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 212–217. (Cited on pages 32 and 74.)

Leven, P. and Hutchinson, S. (2002). A framework for real-time path planning in
changing environments. The International Journal of Robotics Research (IJRR),
21(12):999–1030. (Cited on page 29.)

Lien, J.-M. and Amato, N. M. (2006). Planning motion in completely deformable
environments. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 2466–2471. (Cited on page 32.)

Lien, J.-M., Thomas, S. L., and Amato, N. M. (2003). A general framework
for sampling on the medial axis of the free space. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 4439–4444.
(Cited on page 28.)

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005). Anytime
Dynamic A*: An anytime, replanning algorithm. In Proceedings of the AAAI
International Conference on Automated Planning and Scheduling (ICAPS), pages
262–271. (Cited on page 25.)

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2008). Anytime
search in dynamic graphs. Artificial Intelligence, 172(14):1613–1643. (Cited on
page 25.)

Likhachev, M., Gordon, G., and Thrun, S. (2004). ARA*: Anytime A* with
provable bounds on sub-optimality. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS), pages 767–774. (Cited on page 24.)

Likhachev, M. and Koenig, S. (2005). A generalized framework for Lifelong Planning
A* search. In Proceedings of the AAAI International Conference on Automated
Planning and Scheduling (ICAPS), pages 99–108. (Cited on pages 25 and 79.)

BIBLIOGRAPHY 163

Lim, J., Srinivasa, S. S., and Tsiotras, P. (2021). Lazy lifelong planning for efficient
replanning in graphs with expensive edge evaluation. arXiv. arXiv:2105.12076
[cs.RO]. (Cited on page 72.)

Lindemann, S. R. and LaValle, S. M. (2004). Incrementally reducing dispersion
by increasing Voronoi bias in RRTs. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3251–3257. (Cited on
page 31.)

Maly, M. R. and Kavraki, L. E. (2012). Low-dimensional projections for SyCLoP.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 420–425. (Cited on page 75.)

Mandalika, A., Choudhury, S., Salzman, O., Srinivasa, S. S., and Srinivasa, S. S.
(2019). Generalized Lazy Search for robot motion planning: Interleaving search
and edge evaluation via event-based toggles. In Proceedings of the AAAI In-
ternational Conference on Automated Planning and Scheduling (ICAPS), pages
745–753. (Cited on page 72.)

Manzini, G. (1995). BIDA*: An improved perimeter search algorithm. Artificial
Intelligence, 75(2):347–360. (Cited on page 21.)

Matsuta, K., Kobayashi, H., and Shinohara, A. (2010). Multi Target Adaptive
A*. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1065–1072. (Cited on page 25.)

Moore, A. W. and Atkenson, C. G. (1995). The Parti-game Algorithm for variable
resolution reinforcement learning in multidimensional state-spaces. Machine
Learning, 21(3):199–233. (Cited on page 16.)

Nasir, J., Islam, F., Malik, U., Ayaz, Y., Hasan, O., Khan, M., and Muham-
mad, S. (2013). RRT*-SMART: A rapid convergence implementation of RRT*.
International Journal of Advanced Robotic Systems, 10(7):299–310. (Cited on
page 32.)

Natarajan, R., Saleem, M. S., Aine, S., Likhachev, M., and Choset, H. (2019).
A-MHA*: Anytime Multi-Heuristic A*. In Proceedings of the Symposium on
Combinatorial Search (SoCS), pages 192–193. (Cited on page 24.)

Nayak, S. and Otte, M. (2021). Bidirectional sampling-based motion planning
without two-point boundary value solution. arXiv preprint. arXiv:2010.14692.
(Cited on page 31.)

Nesnas, I. A., Matthews, J. B., Abad-Manterola, P., Burdick, J. W., Edlund, J. A.,
Morrison, J. C., Peters, R. D., Tanner, M. M., Miyake, R. N., Solish, B. S., and
Anderson, R. C. (2012). Axel and DuAxel rovers for the sustainable exploration
of extreme terrains. Journal of Field Robotics, 29(4):663–685. (Not cited.)

Nicholson, T. A. J. (1966). Finding the shortest route between two points in a
network. The Computer Journal, 9(3):275–280. (Cited on page 19.)

BIBLIOGRAPHY 164

Nielsen, C. L. and Kavraki, L. E. (2000). A two level fuzzy PRM for manipulation
planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1716–1721. (Cited on page 30.)

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., and Nieto, J. (2017). Voxblox:
Incremental 3d Euclidean signed distance fields for on-board MAV planning. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1366–1373. (Cited on page 64.)

Orthey, A., Akbar, S., and Toussaint, M. (2020). Multilevel motion planning: A
fiber bundle formulation. arXiv preprint. arXiv:2007.09435 [cs.RO]. (Cited on
page 75.)

Orthey, A., Escande, A., and Yoshida, E. (2018). Quotient-space motion planning.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8089–8096. (Cited on page 75.)

Orthey, A. and Toussaint, M. (2019). Rapidly-exploring Quotient-Space Trees: Mo-
tion planning using sequential simplifications. In Proceedings of the International
Symposium of Robotics Research (ISRR), pages 1–16. (Cited on page 75.)

Otte, M. and Frazzoli, E. (2015). RRTX: Real-time motion planning/replanning
for environments with unpredictable obstacles. In Algorithmic Foundations of
Robotics XI, volume 107, pages 461–478. (Cited on page 32.)

Otte, M. and Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning. The International Journal
of Robotics Research (IJRR), 35(7):797–822. (Cited on page 32.)

Overmars, M. H. (1992). A random approach to motion planning. Technical report,
Utrecht University. (Cited on page 28.)

Overmars, M. H. and Švestka, P. (1994). A probabilistic learning approach to
motion planning. Technical report, Utrecht University. (Cited on page 28.)

Palmieri, L., Bruns, L., Meurer, M., and Arras, K. O. (2020). Dispertio: Optimal
sampling for safe deterministic motion planning. IEEE Robotics and Automation
Letters (RA-L), 5(2):362–368. (Cited on page 50.)

Pan, J., Chitta, S., and Manocha, D. (2012). FCL: A general purpose library
for collision and proximity queries. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3859–3866. (Cited on
page 93.)

Pandit, H., Jenkins, C., Beard, D., Price, A., Gill, R. H. S., Dodd, C., and Murray, D.
(2010). Mobile bearing dislocation in lateral unicompartmental knee replacement.
The Knee, 17(6):392–397. (Cited on pages 2, 95, and 96.)

BIBLIOGRAPHY 165

Paton, M., Strub, M. P., Brown, T., Greene, R. J., Lizewski, J., Patel, V., Gammell,
J. D., and Nesnas, I. A. (2020). Navigation on the line: Traversability analysis
and path planning for extreme-terrain rappelling rovers. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 7034–7041. (Cited on pages 1, 8, 41, 62, 63, 64, 65, 66, 68, 141, 142,
and 143.)

Pearl, J. and Kim, J. H. (1982). Studies in semi-admissible heuristics. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), PAMI-
4(4):392–399. (Cited on pages 23 and 105.)

Penrose, M. D. (2003). Random geometric graphs. Oxford University Press. ISBN:
978-0-19-850626-0. (Cited on page 4.)

Perez, A., Platt Jr., R., Konidaris, G., Kaelbling, L., and Lozano-Perez, T. (2012).
LQR-RRT*: Optimal sampling-based motion planning with automatically derived
extension heuristics. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2537–2542. (Cited on page 32.)

Phillips, J. M., Bedrossian, N., and Kavraki, L. E. (2004). Guided Expansive
Spaces Trees: A search strategy for motion- and cost-constrained state spaces. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), volume 4, pages 3968–3973. (Cited on page 32.)

Pisula, C., Hoff III, K., Lin, M. C., and Manocha, D. (2000). Randomized path
planning for a rigid body based on hardware accelerated Voronoi sampling. In
Proceedings of the International Workshop on the Algorithmic Foundations of
Robotics (WAFR), pages 1–15. (Cited on page 28.)

Plaku, E. (2013). Robot motion planning with dynamics as hybrid search. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 1415–1421.
(Cited on pages 32 and 74.)

Plaku, E. (2015). Region-guided and sampling-based tree search for motion planning
with dynamics. IEEE Transactions on Robotics (T-RO), 31(3):723–735. (Cited
on page 74.)

Plaku, E., Bekris, K. E., Chen, B. Y., Ladd, A. M., and Kavraki, L. E. (2005).
Sampling-based roadmap of trees for parallel motion planning. IEEE Transactions
on Robotics (T-RO), 21(4):597–608. (Cited on page 29.)

Plaku, E., Kavraki, L. E., and Vardi, M. Y. (2010). Motion planning with dynamics
by a synergistic combination of layers of planning. IEEE Transactions on Robotics
(T-RO), 26(3):469–482. (Cited on page 74.)

Pohl, I. (1969). Bi-directional and heuristic search in path problems. PhD thesis,
Stanford University, Stanford, California 94305. (Cited on pages 18, 19, 20,
and 43.)

BIBLIOGRAPHY 166

Pohl, I. (1970). Heuristic search viewed as path finding in a graph. Artificial
Intelligence, 1(3):193–204. (Cited on page 22.)

Pohl, I. (1971). Bi-directional search. Machine Intelligence, 6:127–140. (Cited on
page 19.)

Politowski, G. and Pohl, I. (1984). D-node retargeting in bidirectional heuristic
search. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
274–277. (Cited on page 21.)

Qureshi, A. H. and Ayaz, Y. (2015). Intelligent bidirectional Rapidly-exploring
Random Trees for optimal motion planning in complex cluttered environments.
Robotics and Autonomous Systems, 68:1–11. (Cited on page 31.)

Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S. S. (2009). CHOMP:
Gradient optimization techniques for efficient motion planning. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pages
489–494. (Cited on page 11.)

Reeds, J. A. and Shepp, L. A. (1990). Optimal paths for a car that goes both
forwards and backwards. Pacific Journal of Mathematics, 145(2):367–393. (Cited
on page 59.)

Reid, W., Paton, M., Karumanchi, S., Chamberlain-Simon, B., Emanuel, B., and
Meirion-Griffith, G. (2020). Autonomous navigation over Europa analogue terrain
for an actively articulated wheel-on-limb rover. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1939–
1946. (Cited on pages 8, 68, and 143.)

Richter, S., Thayer, J. T., and Ruml, W. (2010). The joy of forgetting: Faster
anytime search via restarting. In Proceedings of the AAAI International Confer-
ence on Automated Planning and Scheduling (ICAPS), pages 137–144. (Cited on
page 24.)

Rodriguez, S., Xinyu, T., Lien, J.-M., and Amato, N. M. (2006). An obstacle-
based Rapidly-exploring Random Tree. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 895–900. (Cited on
page 32.)

Ruml, W. and Do, M. B. (2007). Best-first utility-guided search. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages
2378–2384. (Cited on page 105.)

Saha, M., Latombe, J.-C., Chang, Y.-C., and Prinz, F. (2005). Finding narrow
passages with probabilistic roadmaps: The small-step retraction method. Au-
tonomous Robots, 19(3):301–319. (Cited on page 28.)

Sakcak, B. and LaValle, S. M. (2021). Complete path planning that simultane-
ously optimizes length and clearance. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). (Cited on page 124.)

BIBLIOGRAPHY 167

Salzman, O. and Halperin, D. (2014). Asymptotically near-optimal RRT for
fast, high-quality motion planning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 4680–4685. (Cited on
page 31.)

Salzman, O. and Halperin, D. (2015). Asymptotically-optimal motion planning
using lower bounds on cost. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 4167–4172. (Cited on pages 42
and 72.)

Sánchez, G. and Latombe, J.-C. (2003). A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In Robotics Research, pages 403–417.
Springer. (Cited on pages 101, 106, and 110.)

Schmerling, E., Janson, L., and Pavone, M. (2015a). Optimal sampling-based motion
planning under differential constraints: The drift case with linear affine dynamics.
In Proceedings of the IEEE Conference on Decision and Control (CDC), pages
2574–2581. (Cited on page 42.)

Schmerling, E., Janson, L., and Pavone, M. (2015b). Optimal sampling-based
motion planning under differential constraints: The driftless case. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
2368–2375. (Cited on page 42.)

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S.,
Goldberg, K., and Abbeel, P. (2014). Motion planning with sequential convex
optimization and convex collision checking. The International Journal of Robotics
Research (IJRR), 33(9):1251–1270. (Cited on page 11.)

Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., and Abbeel, P. (2013). Finding
locally optimal, collision-free trajectories with sequential convex optimization.
In Proceedings of Robotics: Science and Systems (RSS), pages 1–10. (Cited on
page 11.)

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing
fronts. In Proceedings of the National Academy of Sciences of the United States
of America, pages 1591–1595. (Cited on pages 33 and 42.)

Shkolnik, A. and Tedrake, R. (2009). Path planning in 1000+ dimensions using a
task-space Voronoi bias. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2061–2067. (Cited on page 31.)

Silver, D. (2005). Cooperative pathfinding. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), pages
117–122. (Cited on pages 26 and 27.)

Singh, A. P., Latombe, J.-C., and Brutlag, D. L. (1999). A motion planning
approach to flexible ligand binding. In Proceedings of the AAAI International
Conference on Intelligent Systems for Molecular Biology (ISMB), pages 252–261.
(Cited on page 29.)

BIBLIOGRAPHY 168

Sivamurugan, M. S. and Ravindran, B. (2014). RRTPI: Policy iteration on continu-
ous domains using Rapidly-exploring Random Trees. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 4362–4367.
(Cited on page 32.)

Solovey, K. and Kleinbort, M. (2020). The critical radius in sampling-based motion
planning. The International Journal of Robotics Research (IJRR), 39(2-3):266–
285. (Cited on pages 29 and 50.)

Solovey, K., Salzman, O., and Halperin, D. (2018). New perspective on sampling-
based motion planning via random geometric graphs. The International Journal
of Robotics Research (IJRR), 37(10):1117–1133. (Cited on pages 29 and 50.)

Song, G. and Amato, N. M. (2001). Using motion planning to study protein folding
pathways. In Proceedings of the International Conference on Computational
Biology (RECOMB), pages 287–296. (Cited on page 29.)

Song, G. and Amato, N. M. (2004). A motion-planning approach to folding: From
paper craft to protein folding. IEEE Transactions on Robotics and Automation,
20(1):60–71. (Cited on page 29.)

Song, G., Miller, S., and Amato, N. M. (2001). Customizing PRM roadmaps at
query time. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1500–1505. (Cited on page 30.)

Song, G., Thomas, S., and Amato, N. M. (2003). A general framework for PRM
motion planning. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 4445–4450. (Cited on page 30.)

Starek, J. A., Gomez, J. V., Schmerling, E., Janson, L., Moreno, L., and Pavone, M.
(2015). An asymptotically-optimal sampling-based algorithm for bi-directional
motion planning. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2072–2078. (Cited on page 43.)

Starek, J. A., Schmerling, E., Janson, L., and Pavone, M. (2014). Bidirectional
Fast Marching Trees: An optimal sampling-based algorithm for bidirectional
motion planning. In Proceedings of the International Workshop on the Algorithmic
Foundations of Robotics (WAFR), pages 1–15. (Cited on page 43.)

Stentz, A. (1995). The Focussed D* algorithm for real-time replanning. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 1–8. (Cited on page 25.)

Strub, M. P. and Gammell, J. D. (2020a). Adaptively Informed Trees (AIT*): Fast
asymptotically optimal path planning through adaptive heuristics. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
3191–3198. (Cited on pages 5, 8, and 72.)

BIBLIOGRAPHY 169

Strub, M. P. and Gammell, J. D. (2020b). Advanced BIT* (ABIT*): Sampling-based
planning with advanced graph-search techniques. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 130–136.
(Cited on pages 5, 8, 41, and 67.)

Strub, M. P. and Gammell, J. D. (2021a). Admissible heuristics for obstacle clearance
optimization objectives. Technical Report TR-2021-MPS001, Estimation, Search,
and Planning (ESP) Research Group, University of Oxford. arXiv:2104.02298
[cs.RO]. (Cited on pages 8 and 126.)

Strub, M. P. and Gammell, J. D. (2021b). AIT* and EIT*: Asymmetric bidirectional
sampling-based path planning. The International Journal of Robotics Research
(IJRR). To appear, Manuscript #IJR-21-4179. (Cited on pages 5, 6, 8, 72,
and 102.)

Sturtevant, N. R. and Felner, A. (2018). A brief history and recent achievements
in bidirectional search. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8000–8006. (Cited on pages 18, 19, 20, and 21.)

Sturtevant, N. R., Shperberg, S., Felner, A., and Chen, J. (2020). Predicting
the effectiveness of bidirectional heuristic search. In Proceedings of the AAAI
International Conference on Automated Planning and Scheduling (ICAPS), pages
281–290. (Not cited.)

Sudhakar, S., Karaman, S., and Sze, V. (2020). Balancing actuation and computing
energy in motion planning. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). (Not cited.)

Sukharev, A. G. (1971). Optimal strategies of the search for an extremum. USSR
Computational Mathematics and Mathematical Physics, 11(4):119–137. (Cited on
page 13.)

Sun, X. and Koenig, S. (2007). The Fringe-Saving A* search algorithm — A
feasibility study. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 2391–2397. (Cited on page 25.)

Sun, X., Koenig, S., and Yeoh, W. (2008). Generalized Adaptive A*. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 469–476. (Cited on page 25.)

Thayer, J. T., Benton, J., and Helmert, M. (2012). Better parameter-free anytime
search by minimizing time between solutions. In Proceedings of the Symposium
on Combinatorial Search (SOCS), pages 120–128. (Cited on pages 24 and 105.)

Thayer, J. T., Dionne, A., and Ruml, W. (2011). Learning inadmissible heuristics
during search. In Proceedings of the AAAI International Conference on Automated
Planning and Scheduling (ICAPS), pages 250–257. (Cited on pages 26 and 27.)

BIBLIOGRAPHY 170

Thayer, J. T. and Ruml, W. (2008). Faster than Weighted A*: An optimistic
approach to bounded suboptimal search. In Proceedings of the AAAI International
Conference on Automated Planning and Scheduling (ICAPS), pages 355–362.
(Cited on page 23.)

Thayer, J. T. and Ruml, W. (2010). Finding acceptable solutions faster using
inadmissible information. In Proceedings of the Symposium on Combinatorial
Search (SoCS), pages 1–2. (Cited on pages 23 and 105.)

Thayer, J. T. and Ruml, W. (2011). Bounded suboptimal search: A direct approach
using inadmissible estimates. In Proceedings of the AAAI International Conference
on Automated Planning and Scheduling (ICAPS), pages 674–679. (Cited on
pages 23, 105, and 119.)

Tsao, M., Solovey, K., and Pavone, M. (2020). Sample complexity of probabilistic
roadmaps via ε-nets. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2196–2202. (Cited on page 29.)

Urmson, C. and Simmons, R. (2003). Approaches for heuristically biasing RRT
growth. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1178–1183. (Cited on page 31.)

Vadlamudi, S., Aine, S., and Chakrabarti, P. P. (2011). MAWA*: A memory-
bounded anytime heuristic-search algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, 41(3):725–735. (Cited on page 24.)

van den Berg, J., Shah, R., Huang, A., and Goldberg, K. (2011). ANA*: Any-
time Nonparametric A*. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 105–111. (Cited on page 24.)

Wang, Y., Jha, D. K., and Akemi, Y. (2017). A two-stage RRT path planner
for automated parking. In Proceedings of the IEEE Conference on Automation
Science and Engineering (CASE), pages 496–502. (Cited on page 32.)

Wein, R., van den Berg, J., and Halperin, D. (2008). Planning high-quality paths
and corridors amidst obstacles. The International Journal of Robotics Research
(IJRR), 27(11–12):1213–1231. (Cited on page 124.)

Westbrook, M. G. and Ruml, W. (2020). Anytime kinodynamic motion planning
using region-guided search. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 6789–6796. (Cited on
page 75.)

Wilmarth, S. A., Amato, N. M., and Stiller, P. F. (1999). MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
1024–1031. (Cited on page 28.)

Wilt, C. and Ruml, W. (2012). When does Weighted A* fail? In Proceedings of the
Symposium on Combinatorial Search (SOCS), pages 137–144. (Cited on page 23.)

BIBLIOGRAPHY 171

Wilt, C. and Ruml, W. (2015). Speedy versus greedy search. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages
4331––4337. (Cited on page 23.)

Xie, C., van den Berg, J., Patil, S., and Abbeel, P. (2015). Toward asymptotically
optimal motion planning for kinodynamic systems using a two-point boundary
value problem solver. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 4187–4194. (Cited on page 44.)

Yahja, A., Stentz, A., Singh, S., and Brumitt, B. L. (1998). Framed-quadtree path
planning for mobile robots operating in sparse environments. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pages
650–655. (Cited on page 16.)

Yang, I., Gammell, J. D., Murray, D. W., and Mellon, S. J. (2020). Using a robotics
path planning algorithm to assess the risk of mobile bearing dislocation in lateral
unicompartmental knee replacement. In Proceedings of the Annual Meeting of
the International Society for Computer Assisted Orthopaedic Surgery (CAOS),
volume 4 of EPiC Series in Health Sciences, pages 301–305. (Cited on pages 1,
95, 135, and 141.)

Yang, I., Gammell, J. D., Murray, D. W., and Mellon, S. J. (2021a). The Oxford
Domed Lateral Implant: Increasing tibial component wall height reduces the
risk of medial dislocation of the mobile bearing. In Proceedings of the Annual
Meeting of the British Orthopedic Research Society (BORS), page 1069. (Cited
on page 95.)

Yang, I., Gammell, J. D., Murray, D. W., and Mellon, S. J. (2021b). The Oxford
domed lateral unicompartmental knee replacement implant: Increasing wall
height reduces the risk of bearing dislocation. Proceedings of the Institution of
Mechanical Engineers, Part H: Journal of Engineering in Medicine. (Cited on
page 95.)

Yang, Y. and Brock, O. (2004). Adapting the sampling distribution in PRM planners
based on an approximated medial axis. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 4405–4410. (Cited on
page 28.)

Yershova, A., Jaillet, L., Siméon, T., and LaValle, S. M. (2005). Dynamic-Domain
RRTs: Efficient exploration by controlling the sampling domain. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
3856–3861. (Cited on page 32.)

Yershova, A., Jain, S., LaValle, S. M., and Mitchell, J. C. (2010). Generating
uniform incremental grids on SO(3) using the Hopf fibration. The International
Journal of Robotics Research (IJRR), 29(7):801–812. (Cited on page 50.)

BIBLIOGRAPHY 172

Yershova, A. and LaValle, S. M. (2004). Deterministic sampling methods for spheres
and SO(3). In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3974–3980. (Cited on pages 29 and 49.)

Zhou, R. and Hansen, E. A. (2002). Multiple sequence alignment using Anytime
A*. In Proceedings of the AAAI National Conference on Artificial Intelligence,
pages 975–976. (Cited on page 24.)

Zucker, M., Kuffner Jr., J. J., and Branicky, M. S. (2007). Multipartite RRTs
for rapid replanning in dynamic environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 1603–1609.
(Cited on page 32.)

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin,
C. M., Bagnell, J. A., and Srinivasa, S. S. (2013). CHOMP: Covariant Hamiltonian
optimization for motion planning. The International Journal of Robotics Research
(IJRR), 32(9-10):1164–1193. (Cited on page 11.)

	Introduction
	Optimization-specific information
	Environment-specific information
	Intent-specific information

	Background
	Path planning problems
	The feasible path planning problem
	The optimal path planning problem

	Graph-based search
	Optimal search
	Bounded suboptimal search
	Anytime search
	Incremental search
	Improving graph-search heuristics

	Sampling-based planning
	Multiquery planning
	Single-query planning

	Analysis of sampling-based planners
	Assumptions
	Search space assumption
	Cost function assumptions
	Obstacle assumption
	Optimal solution assumption

	Discussion

	Advanced BIT* (ABIT*)
	Literature review
	Fast Marching Trees (FMT*)
	Batch Informed Trees (BIT*)

	Algorithm description
	Notation
	Initialization
	Search
	Approximation
	Approximation, inflation, and truncation policies

	Analysis
	Approximation
	Search

	Evaluation
	Abstract problems
	Reeds-Shepp car problems

	Deploying ABIT* on a next-generation rover
	Adapting ABIT* to plan for Axel
	Verifying the adaptations of ABIT*

	Discussion

	Adaptively Informed Trees (AIT*)
	Literature review
	Motion Planning using Lower Bounds (MPLB)
	Indirectly leveraging environment-specific information

	Algorithm description
	Notation
	Initialization
	Reverse search
	Termination and suspension conditions

	Forward search
	Termination conditions

	Approximation

	Analysis
	Reverse search suspension condition

	Evaluation
	Reeds-Shepp car problems
	Manipulator arm problem
	Knee replacement dislocation problem

	Discussion

	Effort Informed Trees (EIT*)
	Literature review
	Bayesian Effort-Aided Search Trees (BEAST)
	Graph-search algorithms with effort heuristics

	Algorithm description
	Notation
	Initialization
	Reverse search
	Termination and suspension conditions

	Forward search
	Optimal cost bound
	Optimal cost estimate
	Minimum effort estimate
	Edge processing
	Termination conditions

	Analysis
	Reverse search suspension condition

	Evaluation
	Abstract problems
	Reeds-Shepp car problems
	Manipulator arm problems
	Knee replacement dislocation problem

	Discussion

	Conclusion

